
CSE351 Autumn 2012 – Midterm Exam (5 Nov 2012)

Please read through the entire examination first! We designed this exam so that it can be
completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 4 problems for a total of 100 points. The point value of each problem is
indicated in the table below. Write your answer neatly in the spaces provided. If you
need more space (you shouldn't), you can write on the back of the sheet where the
question is posed, but please make sure that you indicate clearly the problem to which the
comments apply. Do NOT use any other paper to hand in your answers. If you have
difficulty with part of a problem, move on to the next one. They are independent of each
other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Name: ____Sample Solution______

ID#: ________________________

Problem Max Score Score
1 15 15
2 20 20
3 40 40
4 25 25

TOTAL 100 100

1. Number Representation (15 points)

The decimal value 11,184,810 is represented as a 32-bit signed binary with the bit pattern
below (0x00aaaaaa):

0000 0000 1010 1010 1010 1010 1010 1010

When it is cast as a float, it is represented by the 32-bit floating point format (8-bits exp,
23-bit fraction) as (0x4b2aaaaa):

0100 1011 0010 1010 1010 1010 1010 1010

Explain why so many of the low-order bits are the same and why do the others differ.
There is no need to convert these to decimal values.

The exponent part of the float value is 1001 0110 which translates to E = 150 –
bias = 150 – 127 = 23. Given that the value of the float is 1.frac * 223, and the
fractional part is 23 bits, the binary point moves 23 bits to the right. Therefore,
we expect to see the same 23 low-order bits in the integer value with the next
high-order bit being 1 (the implied 1. of the float representation). The remaining
8 high-order bits of the integer value are 0.

2. Assembly Code (20 points)

A function ‘flip’ has the following overall structure:

int flip (*unsigned x) {

int num=*x;
int val=0;
int i;
for (__initialize__; __test__; __update__) {

__body__
}
return val;

}

The GCC C compiler generates the following assembly code:

x at %ebp+8

1 movl 8(%ebp), %ebx get x, a pointer to an unsigned int
2 movl (%ebx), %esi dereference x to get the unsigned int into num
3 movl $0, %eax initialize val to 0, stored in %eax
4 movl $0, %ecx initalize i to 0, stored in %ecx
5 .L13:
6 leal (%eax, %eax), %edx double val, like shifting 1 left, put in %edx
7 movl %esi, %eax copy num to %eax
8 andl $1, %eax mask to get low-order bit of num
9 orl %edx, %eax OR the low-order bit with doubled val

10 shrl %esi shift num to right by 1
11 add $1, %ecx increment i
12 cmpl $32, %ecx test if reached 32
13 jne .L13 jump to L13 (top of loop) if i < 32
14 ret return with val stored in %eax

Reverse engineer the operation of this code and then do the following:

A (15 pts). Use the assembly-code version to fill in the missing parts of the C code
below. Also specify which lines above represent each of initialize, test, update, and
body.

Initialize: ____4__________

Test: ____12, 13______

Update: ____11_________

Body: ____6, 7, 8, 9, 10_

int flip (*unsigned x) {

int num=*x;
int val=0;
int i;
for (___i=0______ ; ___i<32_____ ; ___i++______) {

 ___val = (val << 1) | (num & 0x1);___

 ___num = num >> 1;___________________

}
return val;

}

B (5 pts). Describe what this function computes in one English sentence (or at most two).

The function returns an int that has the same bits as stored at x but in reverse
order.

3. Procedures (40 points)

The following assembly routine takes a positive integer as input and returns a positive
integer:

0000000000400525 <mystery>:
 400525: 55 push %rbp
 400526: 48 89 e5 mov %rsp,%rbp
 400529: 53 push %rbx
 40052a: 48 83 ec 18 sub $0x18,%rsp

 40052e: 89 7d ec mov %edi,-0x14(%rbp)
 400531: 83 7d ec 00 cmpl $0x0,-0x14(%rbp)
 400535: 75 07 jne 40053e <mystery+0x19>
 400537: b8 00 00 00 00 mov $0x0,%eax
 40053c: eb 2b jmp 400569 <mystery+0x44>
 40053e: 83 7d ec 01 cmpl $0x1,-0x14(%rbp)
 400542: 75 07 jne 40054b <mystery+0x26>
 400544: b8 01 00 00 00 mov $0x1,%eax
 400549: eb 1e jmp 400569 <mystery+0x44>

 40054b: 8b 45 ec mov -0x14(%rbp),%eax
 40054e: 83 e8 01 sub $0x1,%eax
 400551: 89 c7 mov %eax,%edi
 400553: e8 cd ff ff ff callq 400525 <mystery>
 400558: 89 c3 mov %eax,%ebx
 40055a: 8b 45 ec mov -0x14(%rbp),%eax
 40055d: 83 e8 02 sub $0x2,%eax
 400560: 89 c7 mov %eax,%edi
 400562: e8 be ff ff ff callq 400525 <mystery>
 400567: 01 d8 add %ebx,%eax

 400569: 48 83 c4 18 add $0x18,%rsp
 40056d: 5b pop %rbx
 40056e: 5d pop %rbp
 40056f: c3 retq

A (5 pts). Does this assembly code appear to follow the 32-bit or 64-bit parameter-
passing guidelines? How can you tell?

The function uses mostly 64-bit registers. Also, input arguments are passed using
%edi which indicates parameter passing through registers another sign of a 64-
bit architecure. Don’t be confused by the presence of the base pointer register,
%rbp. A frame base pointer can still be used in the 64-bit architecture.

B (5 pts). Why is %rbx pushed onto the stack initially and then popped at the end?

%rbx is a callee-saved register, and the code uses %rbx (or $ebx) so it must save
it before it overwrites it and then restore it before it returns.

C (5 pts). There are two if() statements in the code that produced this assembly. At which
instruction addresses do they begin?

0x400531 and 0x40053e, where both of the comparisons occur.

D (5 pts). What does the byte ‘ec’ most likely correspond to in the instruction at
0x40055a?

‘ec’ is the twos-complement version of -0x14, the offset being used in the move
instruction at that address.

E (15 pts). Write out C code that would assemble into the routine above.

unsigned int mystery(unsigned int n) {

 if (n == 0) return 0;

 if (n == 1) return 1;

 return (mystery(n-1) + mystery(n-2));

}

F (5 pts). What does this function do?

It returns the nth Fibonacci number (0,1,1,2,3,5,8,...).

4. Stack Discipline (25 points)

Consider a stack from an IA32 machine with the following contents:

Line ref
number

Address in
memory

Value in
memory

Check if
ret addr

Check if
arg or local

var

Check if
saved ebp

22 0xfffffffc 0x00000001 ✓
21 0xfffffff8 0x00000005 ✓
20 0xfffffff4 0xfffffffc ✓
19 0xfffffff0 0x004080a0 ✓
18 0xffffffec 0xfffffffc ✓
17 0xffffffe8 0x00000005 ✓
16 0xffffffe4 0x0040801e ✓
15 0xffffffe0 0xffffffec ✓
14 0xffffffdc 0x00000004 ✓
13 0xffffffd8 0x0040801e ✓
12 0xffffffd4 0xffffffe0 ✓
11 0xffffffd0 0x00000003 ✓
10 0xffffffcc 0x0040801e ✓
9 0xffffffc8 0xffffffd4 ✓
8 0xffffffc4 0x00000002 ✓
7 0xffffffc0 0x0040801e ✓
6 0xffffffbc 0xffffffc8 ✓
5 0xffffffb8 0x00800000 ✓
4 0xffffffb4 0x008000d0 ✓
3 0xffffffb0 0x00000001 ✓
2 0xffffffac 0x00000001 ✓
1 0xffffffa8 0x00408053 ✓
 0xffffffa4
 0xffffffa0

Furthemore, you know that your code is in memory in locations from 0x00400000 to
0x005fffff and that your dynamic data heap is in locations 0x00800000 to 0x009fffff.

A (5 pts). Assume that machine execution has just been stopped just before the first
instruction of a procedure. What address will we return to after that procedure
completes?

The return address last placed on the stack in line 1, or 0x00408053.

B (5 pts). How much space did the calling procedure making this last call allocate on the
stack for local variables and arguments? List the reference numbers of stack elements.

2, 3, 4, 5

C (10 pts). Annotate the stack on the previous page with the type of data stored at that
location on the stack by placing a check mark in the appropriate column.

D (5 pts). Is there a recursive procedure on the stack? If so, how many calls deep is the
recursion at the point represented by the stack above?

Yes, the four return addresses at lines 7, 10, 13, and 16 are the same indicating
that we are four deep into a recursion.

REFERENCES

Powers of 2:

20 = 1
21 = 2 2-1 = .5
22 = 4 2-2 = .25
23 = 8 2-3 = .125
24 = 16 2-4 = .0625
25 = 32 2-5 = .03125
26 = 64 2-6 = .015625
27 = 128 2-7 = .0078125
28 = 256 2-8 = .00390625
29 = 512 2-9 = .001953125
210 = 1024 2-10 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer
pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack
ret pop return address from stack and jump there

mov move a value between registers and memory
lea compute effective address and store in a register

add add 1st operand to 2nd with result stored in 2nd
sub subtract 1st operand from 2nd with result stored in 2nd
and bit-wise AND of two operands with result stored in 2nd
or bit-wise OR of two operands with result stored in 2nd
shr shift data by 1 bit to the right

jmp jump to address
cmp subtract 1st operand from 2nd and set flags
jne conditional jump to address if zero flag is not set

