
CSE351 Spring 2010 – Midterm Exam (3 May 2010)

Please read through the entire examination first! We designed this exam so that it can be
completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 3 problems for a total of 100 points. The point value of each problem is
indicated in the table below. Write your answer neatly in the spaces provided. If you
need more space (you shouldn't), you can write on the back of the sheet where the
question is posed, but please make sure that you indicate clearly the problem to which the
comments apply. Do NOT use any other paper to hand in your answers. If you have
difficulty with part of a problem, move on to the next one. They are mostly independent
of each other.

For problem 3, you may find it convenient to separate the page of assembly code from
the rest of the exam (you do not need to turn in that page as no answers are to be written
on that page) so that you can refer to it more easily for subsequent questions.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Name: ________________________

ID#: ________________________

Problem Max Score Score
1 35
2 20
3 45

TOTAL 100

1. Number Representation (35 points)

While on a boat, two circuit elements within the boat's 8-bit navigation computer break.
Miraculously, the computer still seems to work, except that when it reads or writes any
value, the two least significant bits are always 0.

For instance, this computer would erroneously compute:

 0000 0001
+ 0000 0011
 0000 0000

Notice that the computer also failed to carry from the two LSBs, since it read them as 0.

a) (5 pts) What two's complement integers will this computer read correctly?

Any positive or negative number that is divisible by 4 (two LSBs are 0).

b) (10 pts) The boat uses a floating point system with 1 sign bit, 3 bits for the exponent,
and 4 bits for the significand. What positive denormalized values will it read correctly?
Recall that denormalized values will have an exponent of 000 and that the bias for a 3 bit
exponent is 23-1-1 = 3.

Denormalized numbers have an exponent that is all 0s, implying an exponent equal to 1-
bias, or 1-3, or -2 in this case. There is a leading 0 implied before the binary point.
0 000 1000 = 0.10002 * 2-2 = 1/8
0 000 0100 = 0.01002 * 2-2 = 1/16
0 000 1100 = 0.11002 * 2-2 = 3/16

c) (10 pts) What is the smallest normalized value you can represent with this broken
system?

By smallest we mean closest to zero. The smallest normalized values, positive and
negative, will have the same absolute value (only the sign bit changes). So, we’ll stick
with the positive fraction. Normalized values have a smallest possible exponent of 1.
When we subtract the bias of 3, that yields -2. There is also a leading 1 implied before
the binary point: 0 001 0000 = 1.00002 * 2-2 = 1/4

d) (10 pts) While on your boat, you discover that one of your guest lives at the south pole.
Fortunately, the navigation computer represents latitude with double precision, with 1 bit
for the sign, 7 bits for the exponent, and 8 bits for the significand. This means that the
double precision value will occupy two bytes (and each of the two bytes will have 0s in
the two LSBs – still broken). What is now the closest latitude to the south pole that the
computer will represent? The south pole has a latitude of -90. Recall that with a 7 bit
exponent the exponent bias will be 27-1-1=63.

• What positive exponents can you represent correctly? ________________

• What is the value of the sign bit? ________________

• What is the biggest significand you can represent correctly? ________________

• What is the number closest to -90 that you can represent? ________________

• What will be the two byte encoding of this number?
 Sign (1 bit) and Exponent (7 bits) ________________

 Significand (8 bits) ________________

Exponents will have to be divisible by 4 as they are represented in the 7 LSBs of the first
byte of the double precision number (the MSB is the sign bit). Therefore, we can
represent 64, 68, 72, 76, etc. corresponding to exponents of 1, 5, 9, 13, etc.

The sign bit is 1 as we want to represent a negative number close to -90.

The significand byte is 11111100 because of our computer’s flaw in the 2 LSBs. This
corresponds to a significand of 1.11111100.

Thus, the closest number to -90 will be -1.111111002 * 25 = -111111.12 = -63.5.
Not very close at all to -90. Our guest will have a long swim to the south pole.

The encoding will be: 1 1000100 11111100

2. Stack Frames (20 points)

Given the following disassembly of a short function:

0x00001fb6 <func+0>: push %ebp
0x00001fb7 <func+1>: movl %esp,%ebp
0x00001fb9 <func+3>: subl $0x8,%esp
0x00001fbc <func+6>: movl 0x8(%ebp),%eax
0x00001fbf <func+9>: addl %eax,%eax
0x00001fc1 <func+11>: leave
0x00001fc2 <func+12>: ret

and the following stack, %ebp, and %esp *right after* executing the instruction,
<func+3>, at address 0x00001fb9:

%esp = 0x300
%ebp = 0x308

0x300: 0x00000000
0x304: 0x00000000
0x308: 0x00000328
0x30c: 0x00001fdc
0x310: 0x00000003

a) (8 pts) What is the value in %eax (the return value of the function) after we return and
leave the function (after instruction <func+12>)?

The value of %eax is 6. The last instruction that touches %eax in this function is
<func+9>, the add instruction. It basically doubles what was in %eax before. What
was in %eax before was loaded from memory (the stack), 8 bytes after %ebp, which is
0x308 + 8 = 0x310. The value 3 is at that location, so 3 is doubled to yield 6.

b) (6 pts) What was the old value of the stack pointer (%esp) before we executed the first
instruction of this function (at <func+0>)?

The value of %esp was 0x30c. At instruction <func+3>, we subtracted 8 bytes from
the stack pointer (%esp) for temporary scratch space. That accounts for the two
0x00000000 values at the top of the stack. The instruction at <func+0> pushed the
old value of %ebp onto the stack. Therefore we subtracted another 4 bytes from the
stack pointer. This means that the old %esp was 12 bytes more than the current
location. 0x300 + 8 + 4 = 0x30c

c) (6 pts) What is the old value of the base pointer (%ebp) before we entered this
function?

The value of %ebp was 0x328. At instruction <func+0> (push %ebp), we pushed
the old %ebp to the top of the stack by first decrementing the stack pointer to point to
0x308 (recall, it started at 0x30c). The value stored at 0x308 is the old value of
%ebp.

3. Analyzing and Extending Assembly Code (45 points)

For this problem, you’ll examine the assembly code for the procedure “walk”, an
interpreter of instructions for a simple robot. The robot keeps track of its current (x, y)
position on the Cartesian plane, and its current direction:

• north (encoded as 0; facing towards higher y coordinates),
• east (encoded as 1; facing towards higher x coordinates),
• south (encoded as 2; facing towards lower y coordinates), or
• west (encoded as 3; facing towards lower x coordinates).

The “walk” function (shown on the next page) takes as arguments:
• an initial x coordinate,
• an initial y coordinate,
• an initial direction, and
• an array of instructions (encoded as unsigned integers, ending in a 0)

that tell it how to move.

The procedure reads and decodes each instruction in turn, branching to the relevant code
for each instruction and updating the robot’s position and direction accordingly. The
instruction set is very limited:

• HALT (encoded as 0) tells the robot to stop reading instructions and print its
ending position.

• RIGHT (encoded as 1) tells the robot to stay in place and turn 90 degrees to the
right. For example, if the robot reads a RIGHT instruction when it is at (2, 5),
headed north, it will remain at position (2, 5) and turn to face east.

• STEP (encoded as 2) tells the robot to take one step in its current direction. For
example, if the robot reads a STEP instruction when it is at (2, 4), headed north, it
will move to (2, 5), still facing north.

Starting at (0, 0) headed north and given the 8 encoded instructions: 2, 1, 2, 2, 1, 2, 2, 0;
the robot halts at (2, −1), headed south. Use this input/output and the assembly code for
walk on the next page to answer the questions on the page after that.

void walk(int x, int y, unsigned dir, unsigned instr[])

walk:

pushl %ebp
movl %esp, %ebp
subl $40, %esp
movl $0, -12(%ebp)
jmp .L15

.L25:
movl -12(%ebp), %eax
movl 20(%ebp,%eax,4), %eax
cmpl $1, %eax
je .L16
cmpl $2, %eax
je .L17

[AAA:]

.L15:

movl -12(%ebp), %eax
movl 20(%ebp,%eax,4), %eax
testl %eax, %eax
jne .L25
[Print current position]
leave
ret

.L16:
movl 16(%ebp), %eax
addl $1, %eax
andl $3, %eax
movl %eax, 16(%ebp)
addl $1, -12(%ebp)
jmp .L15

.L17:
movl 16(%ebp), %eax
cmpl $0, %eax
je .L20
cmpl $1, %eax
je .L21
cmpl $2, %eax
je .L22
cmpl $3, %eax
je .L23
jmp .L19

.L20:
addl $1, 12(%ebp)
jmp .L19

.L21:
addl $1, 8(%ebp)
jmp .L19

.L22:
subl $1, 12(%ebp)
jmp .L19

.L23:
subl $1, 8(%ebp)

.L19:
addl $1, -12(%ebp)
jmp .L15

[BBB:]

3. Analyzing and Extending Assembly Code (continued) (45 points)

a) (8 pts) For each parameter to walk, what is the corresponding memory address used in
the assembly code (in terms of %ebp)?

x: ____________________________

y: ____________________________

dir: ____________________________

instr: ____________________________

x: 8(%ebp); y: 12(%ebp); dir: 16(%ebp); instr: 20(%ebp);

b) (20 pts) Describe what each of these sections of code does, in 1-2 sentences each:

• .L25 to through “je .L17”

This code reads the next instruction from the instructions array (which starts at
20(%ebp) and is indexed by the variable i stored in -12(%ebp)), and switches on
this instruction code, branching to the case to handle that instruction.

• .L15 through “jne .L25”

This is the loop test that checks to see if the next is a HALT (0) that will cause the
procedure to return after doing some printing.

• .L16 to .L17

This implements the RIGHT command by first incrementing dir (modulo 4 –
implemented using the andl instruction) and then incrementing i (stored in
-12(%ebp)) for indexing the next instruction in the array.

• .L17 through “jmp .L15”

This part of the code implements the STEP instruction. It must first check dir to
determine whether to inc/dec x or y. It also concludes by incrementing i (stored
in -12(%ebp)) for indexing the next instruction in the array.

c) (17 pts) Implement code for a new IFNORTH instruction for the robot (encoded as 3).
When the robot reads IFNORTH at index i in the instruction array:

• if the robot is facing north, it replaces its current instruction index with the integer
stored at index i + 1 in the instruction array and continues processing
instructions starting at this new index; else

• if the robot is not facing north, it continues processing instructions starting at
index i + 2 in the instruction array.

For example, the instruction array IFNORTH(3), 3, STEP(2), HALT(0) should cause the
robot to halt in its current position if it is facing north (the next instruction executed is the
HALT at i = 3) or, if it is not facing north, take one step forward (the next instruction
executed is the STEP at i = 2) and then halt.

We’ll insert the following instructions at the location marked AAA in the assembly code:

 cmpl $3, %eax
 je .L30

Write the assembly code to implement the IFNORTH instruction (show the instructions
to be inserted in the assembly code at the location marked BBB in the space provided
below). Of course, they will start at the label .L30.

.L30:
 movl 16(%ebp), %eax // eax = dir
 cmpl $0, %eax // if dir != 0
 jne .L31 // goto .L31
 movl -12(%ebp), %eax // eax = i
 addl $1, %eax // eax++
 movl 20(%ebp,%eax,4), %eax // eax = instr[eax]
 movl %eax, -12(%ebp) // i = eax
 jmp .L15 // goto .L15
.L31
 movl -12(%ebp), %eax // eax = i
 addl $2, %eax // eax = eax + 2
 movl %eax, -12(%ebp) // i = eax
 jmp .L15 // goto .L15

