CSE 351 Section 8 — Lab 4 Preparation
Source of Cache Misses (“3 C’s”)

e Compulsory / Cold: first access to a particular cache block
o Parameter fix: Increase the block size
o Code fix: Make data accessed more compact (e.g., reduce struct size)
e Conflict: cache is large enough, but too many blocks map to the same set
o Parameter fix: Increase associativity (none in fully-associative caches)
o Code fix: Change access pattern, use padding
® (Capacity: the set of active blocks (working set) is larger than the cache
o Parameter fix: Increase cache size
o Code fix: Reduce size of working set / subdivide problem

Lab 4 Part 1

We strongly recommend using the Cache Simulator to visualize the behavior of your algorithms for this part of
the lab. See the Cache Simulator Tutorial lesson on Ed to get started!

Query a simulated cache in a programmatic way:
e void flush_cache(void) ; —resets cache to cold state
e bool_t access_cache(addr_t address) ; —returns TRUE/1 on a hit, FALSE/® on a miss
(plus updates the cache)

Examples:
e flush_cache(); // reset cache
while(!access_cache(0)); // runs 2x: M loads block 0, H exits loop

e for(int i = 0; 1; i+=2) // infinite loop
access_cache(i); // access even addresses in increasing
order

Exercise 1: Coding Accesses
Using the Lab 4 Part 1 functions given above, write a C for-loop that generates this specific sequence of accesses:

1) access_cache(0)
2) access_cache(8)
3) access_cache(0)
4) access_cache(16)

for (; ;) 1

Exercise 2: Benedict Cumbercache

Given the following sequence of access results (decimal addresses) on a cold/empty cache of size 16 bytes, what

can we deduce about its properties? Assume an LRU replacement policy.

1)
2)
3)
4)
5)

A.

access_cache(0) # False/0

access_cache(8) # False/0
access_cache(0) # True /1
access_cache(16) # False/0
access_cache(8) # False/0

What can we say about the block size (i.e., what range is possible)?

Now assume that the block size is 8 bytes. Are the following associativity values possible (i.e., would that
cache produce the given access results)? Hint: Draw out each cache and simulate the access pattern.

a. Can this cache be direct-mapped?

b. Can this cache be 2-way set associative?

c. Can this cache be 4-way set associative?

Cache Images

Cache images are a useful concept when approaching cache analysis and cache optimization problems that

allows us to intuit cache mappings without having to do an address TIO breakdown every time.

A cache image is a cache-sized (C bytes) chunk of memory
that we can divide memory with (the same way we do with
cache blocks). The “cache image number” corresponds to the
Tag (i.e., all cache blocks within the same cache image share
the same Tag field encoding).

Within a cache image, cache blocks always map into the cache
in the same order, i.e., 1st block maps into Set 0, 2nd block
maps into Set 1, each subsequent block maps into the next
set. From this property, we can reason through which blocks
will map into the same set in the cache based on the blocks’
positions within their corresponding cache image. In
particular, in a direct-mapped cache (like Lab 4 Part 2!),
accessing the same block of two different cache images is
guaranteed to cause an eviction.

A small example is shown where the beginning of memory is
divided into cache images of size C = 16 bytes:

Example: Cache Block Mapping

If we have a direct-mapped cache of size 16 bytes with 4-byte blocks, it will Set
look something like what is shown below on the right:

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48
0x50

0x58

There are 4 cache blocks per cache image and these will map onto the

corresponding set number because it is direct-mapped.

20 IfSIeJea\aZ

5e[9f|1a]

(ache lmage

a2|d0|4f|c4|al

0
0c|f7|27|

b8|bd|lalcal35

95|cb|80|

84[3f] OZﬁef—l@e

£3[£6]e5]

6£[7e]63]

cd|4alf6[48]1a
16 Image 2
e9[36[ae|32]0d

37[bc[c9]

93|dc|b8 7a(3b

1a|b2|0c|

che lmage

d3|a6|a4171|e2

23|9c|59|

60[15/68[76|d3

e6[25]|be]

a4la5[db beeJl%]g%gf di[2e]

17[1£/95[c4 |24

63[d2]62]

b1[7a]44]58|c7]ca[03]81]

VT Cache Data

| PEE=[==[==[=-]

o8
-

P[]

(0]
-+
N

PE—=[===]

==
w

PE====[-==]

For example, every “Block 1” (i.e., the second cache block) within a cache image is guaranteed to map into Set 1
of the cache. In the memory diagram above, this includes addresses 9x04-07, 0x14-17, 0x24-27, etc.

Exercise 3: Matrix Conflicts

Assume our machine has 8-bit addresses and a 32 B direct-mapped cache with 8 B block size.

Given two 4 x 4 int matrices (2D arrays) A and Z, where A starts at address Ox00 and Z starts immediately
after A. Which elements of matrix Z conflict with A[1] [1] in the cache? Visualize the mappings using cache
images!

Main Memory
0x00|20/f6|ef|eala2[5e|9f|1a|
ox0sla2|d0|4f|cd|a0|0c|£7]27]
ox10/b8|bd|lalcal35/95|cb|80)
0x14[84[3£]02]4£[8e[£3[£6]e5]
nx20lcd|/4a|f6/48|1a|6f(7e 63|
0x28/e9]36/ae|[32[0d/37|bec|c9|
0x30/93|de|b8|7a|3b|1a|b2|0c|
0x29/d3[a6]ad[71]e2]23]9c[59]
0x40{60[/15/68|76/d3[e6[25 be|
oxsslad|a5|dblbe|56/af|dl|2e]
0x50[17][1£[95[c4[24]63]d2][62]
ox56|bl|7al44|58|c7[c4]03]81)
0x60{54]/84|69[8clablcc|1£]d9|
0x62(41]64[55]fc[83]cc[0d][98]
0x70/55/20/4e|d5/3d4]/17/45|b5|
0x72|93|e8|a9/91/27/31|b5(84|

	CSE 351 Section 8 – Lab 4 Preparation
	Source of Cache Misses (“3 C’s”)
	Lab 4 Part 1
	Exercise 1: Coding Accesses
	Exercise 2: Benedict Cumbercache
	Cache Images
	Example: Cache Block Mapping
	Exercise 3: Matrix Conflicts

