CSE 351 Section 7 — Caches

Exercise 1: 2-way Set Associative Cache Accesses

Cache size: 64B, Block size: 4B, 2-way associative, 12-bit addresses. All values shown in hex (Tags are padded).

Set | valid Tag BO | B1 | B2 | B3 Set | valid Tag BO | B1 | B2 | B3
0l o |. 12 | 81|04 |58 |eb| 4] 0 | 06 | CA| FE| Fo | oD | Offsetbits: 2
0 0] 07 | B3 | DF | D3 | E4 4 0] 2B | D3 | 3C| 52 | FB
116 |4 |70 |AE|CClO1f 5| 1 | 21 |DE]|AD|BE|EF]
1 1 2F | 01 | 20| 40 | 03 5 0] 20 | AA| 9B | DA | 50 Index bits: 3
2] 1 |03 |4F |D4|A1|3B| 6| 0 | 41|21 |2D|BA|A0
2 1 OE | 99 | 09 | 87 | 56 6 1 37 | 22 | B6| DB | AA
31,0 |. 06 | E9 |09 |ED|DD| 7| 1 | 11 |1 00 | 12| 51 | 55 Tagbits: 7
3 0] 6E | F2 | AB| 94 | 31 7 0] 6C | 12 | 7TE | D2 | 60
Hit or Miss? Data returned

a) Read 1byteatOx435 = Ob 0100 0011 0101 Hit OxAD

_ Miss
b) Read 1byte at 0x388 = 0Ob 0011 1000 1000 n/a

(no tag match)

Exercise 2: Fully Associative Cache Accesses

Cache size: 64B, Block size: 4B, fully associative, 12-bit addresses. All values shown in hex (Tags are padded).

Set | Vvalid Tag BO | B1 | B2 | B3 | Set | Valid Tag BO | B1 | B2 | B3
Ol 1 |1F4|e102]03|04| O| 0 | 02F | AB |C5| 43 | FF | Offsetbits: 2
0]_0 _J1F9 12105 |E2 /93| O] o | 1C6 | 00 |11 |22 |33
0] .0 _.|266|20|BB|34|EA] O] 1 | 161 | DA |14 |EE |22
0] 1 | OAB| 02|30 |44 |67] Of 1 | 045 |67 | 78|89 |9A| Indexbitss 0
0| .1 .| 100 | F4 | 4D |EE|11] O] 0O | 208 | 26 | 8F | 50 | 66
O _ 1 .]034|FD|EC|BA 23] O} 1 | 001 | 70 |00 44 |A6
O .1 |077/12|23|34|45] Of 1 | 016 |90 |32 AC |24 | Taghitss 10
0 0 341 | 73| 16 | 2B | 1F 0 0 395 | 48 | B3 | 20 | 53
Hit or Miss? Data returned
a) Read 1byteatOx1DD = Ob 0001 1101 1101 Hit Ox23
b) Read 1byteat®x719 = 0b 0111 0001 1001 Miss n/a
(invalid)

Exercise 3: Code Analysis

This code accesses a two-dimensional array of size 64x64 ints, with variables sum, i, and j stored in registers.

Assume we are using a direct-mapped, 1 KiB cache with 16 B block size, and that the cache starts cold/“empty.”

a)

b)

c)

d)

int sum = 0;
for (int i = 0; i < 64; i++)
for (int j = 0; j < 64; j++)
sum += array[i][j]; // assume &array = 0x600000

What is the miss rate of the execution of the entire loop?

Every block can hold 4 ints (16B/4B per int), so we will need to pull a new block from memory every 4

4 bytesperint _ 1block _ _ ~ro
16 bytes per block ~ 4ints 0.25=25%

accesses of the array. This means this miss rate is

If we have an average memory access time (AMAT) of 60 ns and a hit time of 10 ns, what is the miss
penalty?

With the 25% miss rate from part (a), we have 10 + 0.25 * MP = 60. Solving for MP tells us the miss
penalty is 200 ns.

What code modifications can change the miss rate? Brainstorm before trying to analyze.
Possible answers:

e switch the loops (i.e., make j the outer loop and i the inner loop)

e switch j and 1 in the array access

e make array adifferent type (e.g., char [][], Long[]1[])

e make array an array of Linked Lists or a 2-level array, etc.

What cache parameter changes (size, associativity, block size) can change the miss rate?

Modifying cache size:

No, it doesn't matter how big the cache is in this case (if the block size doesn't change). We will still be
pulling the same amount of data each miss, and we will still have to go to memory every time we
exhaust that data.

Modifying associativity:
No, this is helpful if we want to reduce conflict misses, but since the data we're accessing is all in
contiguous memory (thanks arrays!), booting old data to replace it with new data isn't an issue.

Modifying block size:

Yes, bigger blocks mean we pull bigger chunks of contiguous elements in the array every time we have a
miss. Bigger chunks at a time means fewer misses down the line. Likewise, smaller blocks increase the
frequency with which we need to go to memory (think back to the calculations we did in part (a) to see
why this is the case).

NOTE: Remember that the results we got were for this specific example. There are some code examples
in which changing the size or associativity of the cache will change the miss rate.

	CSE 351 Section 7 – Caches
	Exercise 1: 2-way Set Associative Cache Accesses
	Exercise 2: Fully Associative Cache Accesses
	Exercise 3: Code Analysis

