
CSE 351 Section 7 – Caches

Exercise 1: 2-way Set Associative Cache Accesses

Cache size: 64B, Block size: 4B, 2-way associative, 12-bit addresses. All values shown in hex (Tags are padded).

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 0 12 81 04 58 eb 4 0 06 CA FE F0 0D Offset bits: _2____
0 0 07 B3 DF D3 E4 4 0 2B D3 3C 52 FB

1 0 4D 70 AE CC 01 5 1 21 DE AD BE EF

1 1 2F 01 20 40 03 5 0 20 AA 9B DA 50 Index bits: _3____
2 1 03 4F D4 A1 3B 6 0 41 21 2D BA A0

2 1 0E 99 09 87 56 6 1 37 22 B6 DB AA

3 0 06 E9 09 ED DD 7 1 11 00 12 51 55 Tag bits: _7____
3 0 6E F2 AB 94 31 7 0 6C 12 7E D2 00

 Hit or Miss? Data returned

a)​ Read 1 byte at 0x435 = 0b 0100 0011 0101 Hit 0xAD

b)​ Read 1 byte at 0x388 = 0b 0011 1000 1000 Miss

(no tag match)
n/a

Exercise 2: Fully Associative Cache Accesses

Cache size: 64B, Block size: 4B, fully associative, 12-bit addresses. All values shown in hex (Tags are padded).

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 1 1F4 01 02 03 04 0 0 02F AB C5 43 FF Offset bits: _2____
0 0 1F9 12 05 E2 93 0 0 1C6 00 11 22 33

0 0 266 20 BB 34 EA 0 1 101 DA 14 EE 22

0 1 0AB 02 30 44 67 0 1 045 67 78 89 9A Index bits: _0____
0 1 100 F4 4D EE 11 0 0 208 26 8F 50 66

0 1 034 FD EC BA 23 0 1 001 70 00 44 A6

0 1 077 12 23 34 45 0 1 016 90 32 AC 24 Tag bits: _10___
0 0 341 73 16 2B 1F 0 0 395 48 B3 20 53

 Hit or Miss? Data returned

a)​ Read 1 byte at 0x1DD = 0b 0001 1101 1101 Hit 0x23

b)​ Read 1 byte at 0x719 = 0b 0111 0001 1001 Miss

(invalid)
n/a

Exercise 3: Code Analysis

This code accesses a two-dimensional array of size 64 64 ints, with variables sum, i, and j stored in registers.​×
Assume we are using a direct-mapped, 1 KiB cache with 16 B block size, and that the cache starts cold/“empty.”

​ int sum = 0;

for (int i = 0; i < 64; i++)

​ for (int j = 0; j < 64; j++)

​ sum += array[i][j]; // assume &array = 0x600000

a)​ What is the miss rate of the execution of the entire loop?

Every block can hold 4 ints (16B/4B per int), so we will need to pull a new block from memory every 4

accesses of the array. This means this miss rate is = 0.25 = 25%
4 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑖𝑛𝑡

16 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 = 1 𝑏𝑙𝑜𝑐𝑘
4 𝑖𝑛𝑡𝑠

b)​ If we have an average memory access time (AMAT) of 60 ns and a hit time of 10 ns, what is the miss

penalty?

With the 25% miss rate from part (a), we have 10 + 0.25 * MP = 60. Solving for MP tells us the miss
penalty is 200 ns.

c)​ What code modifications can change the miss rate? Brainstorm before trying to analyze.

Possible answers:
●​ switch the loops (i.e., make j the outer loop and i the inner loop)
●​ switch j and i in the array access
●​ make array a different type (e.g., char[][], long[][])
●​ make array an array of Linked Lists or a 2-level array, etc.

d)​ What cache parameter changes (size, associativity, block size) can change the miss rate?

Modifying cache size:
No, it doesn't matter how big the cache is in this case (if the block size doesn't change). We will still be
pulling the same amount of data each miss, and we will still have to go to memory every time we
exhaust that data.

Modifying associativity:
No, this is helpful if we want to reduce conflict misses, but since the data we're accessing is all in
contiguous memory (thanks arrays!), booting old data to replace it with new data isn't an issue.

Modifying block size:
Yes, bigger blocks mean we pull bigger chunks of contiguous elements in the array every time we have a
miss. Bigger chunks at a time means fewer misses down the line. Likewise, smaller blocks increase the
frequency with which we need to go to memory (think back to the calculations we did in part (a) to see
why this is the case).

NOTE: Remember that the results we got were for this specific example. There are some code examples
in which changing the size or associativity of the cache will change the miss rate.

	CSE 351 Section 7 – Caches
	Exercise 1: 2-way Set Associative Cache Accesses
	Exercise 2: Fully Associative Cache Accesses
	Exercise 3: Code Analysis

