CSE 351 Section 6 — Arrays, Structs, & Buffer Overflow

Exercise 1: Array Comparison

We have a matrix (M rows X N columns) of integral data and are deciding between using a 2-dimensional array
versus a 2-level array. Assume we use ints, M = 3,and N = 4 and declare the arrays:

2-dimensional array: 2-level array:
// addr 0x300 int ro[] = { 0,0,1,0}; // addr 0x330
int A2D[3][4] = {{ 0,0,1,0} int r1[] = {-4,0,5,0}; // addr 0x340
{-4,0,5,0} int r2[] = { 0,0,0,0}; // addr 0x350
{ intx A2L[] = {r0O,r1,r2}; // addr 0x360
0,0,0,0}};
Question(s) 2-dimensional Array 2-level Array
Overall memory allocated | M*N*sizeof(int) =48 B M*N*sizeof(int) + M*sizeof(int*)
in bytes =72B
Guaranteed continuous Smallest: 48 B (entire array) Smallest: 16 B (row array)
chunks of memory
Largest: 48 B (entire array) Largest: 24 B (pointer array)
Data type returned by: A2D[0] : intx* (row) A2L[0] : intx* (pointer)
A2D[1][3]: int (element) A2L[1][3]: int (element)
Number of memory A2D[1]: 0 (address computation) | A2L[1]: 1 (read pointer)
accesses to get:
A2D[2][2]: 1 (read element) A2L[2][2]: 2 (read element)
Address of: A2D[2]: ©x320 A2L[2]: 0x370
A2D[2][1]: 0x324 A2L[2][1]: ox354

Space to draw memory diagrams:

[ojfo] [o)f1] [olf2] [o](3] ([1][0] [1](1] ([1][2] ([1](3] ([2][0]

(21(1]

[2](2]

[2][3]

pp:| el o | 1|l e|l-2ale|5s5]|e|e|le]|e]oe
A A A
] 1]
0x300 0x310 0x320
o] [0)[1] [0li2] [0](3]
ril o | o] 12| o
(0] (1] 2] [0l [[l (e
a2t | ex330¢ | ox3s0d| ox3s04 -4 | e | 5 [o
h ’ \ 210] [[212] [2103]
Ox360 Ox360 r3: 0 0 0 0

Exercise 2: Struct Layout

struct student {
int id;
char* name;
char age;
}s5
a) Inthe boxes below (each box = 1 byte), shade the bytes that are used and label the fields. Label the unused
bytes as internal or external fragmentation. The first field (7 d) is given.

b A P —_ L o
T v e

id internal frag name age external frag

b) Compute the properties of struct student:

Size: 24 B Internal fragmentation: __ 4B External fragmentation: 7B

c) Reorder the fields of struct student so that there is no internal fragmentation and recompute its
properties:

struct student {
char* name;

int id;
char age;
b5
M e A
T ~ —_—
name id age external frag

Size: __16B Internal fragmentation: ___ 0B External fragmentation: _ 3B

Exercise 3: Exploit String
In a modified version of bufbomb, we get the following GDB output:

Breakpoint 1, getbuf () at bufbomb.c:136
136 unsigned long long val = (unsigned long long)Gets(buf);
(gdb) print &buf
$1 = (char (x)[12]) ox7fffffffcean
(gdb) info frame
Stack level 0, frame at Ox7fffffffc6cO:
rip = 0x400da8 1in getbuf (bufbomb.c:136); saved rip = 0x400a54
<more info>
(gdb) x /4gx Srsp
Ox7fffffffc6ad: OxO0O00O0000O0OO000 OXxO00OOOOOOOOOOOOO
Ox7fffffffcebo: Ox00007fffffffbfdo OXxO0OOOOOO00400a54

Design an exploit string to inject and execute the machine code from the “Getting Machine Code” example from
the previous page.

e How many bytes do you need to write to reach/overwrite the return address?

e Where will you place the machine code bytes?

e What do you want to change the return address to in order to execute the inserted machine code?

Important information:
e bufstartsat Ox7fffffffcecao.
e Return address (0x400a54) starts at Ox7fffffceb8.
e 0x18 =24 bytes between start of buf and start of return address, so need exploit string to be 30-32
bytes total to overwrite return address.
o Stack addresses use 6 bytes, so could get away with 24+6 bytes or add extra two bytes of zeros.
e 13 bytes of machine code must go in 24 interim bytes; let’s use start of buf
o Could place anywhere in address range Ox7fffffffc6a0-0x7fffffffceab.
e Change return address to start of machine code (start of buf).
e (Can pad with whatever byte we want (let’s use Oxaa).

One possible exploit string (many valid ones exist!):

48 c7 cO cd ab 34 12 68 80 10 40 00 c3 aa aa aa
Qaa aa aa aa aa aa aa aa a® c6 ff ff ff 7f 00 00

	CSE 351 Section 6 – Arrays, Structs, & Buffer Overflow
	Exercise 1: Array Comparison
	Exercise 2: Struct Layout
	
	Exercise 3: Exploit String

