
CSE 351 Section 4 – Lab 2 Prep (x86-64, GDB)

Exercise 1: x86 to C

Write an equivalent C function for the following x86 code:

mystery:
 leal (%rdx,%rdx,2), %eax
 addl %eax, (%rdi)
 movslq %esi, %rsi
 leaq (%rdi,%rsi,4), %rax
 ret

int* mystery(int* a, int b, int c) {

​ *a += 3*c;

​ return a+b;
}

●​ %rdx holds c (3rd arg). While unintuitive, the “l” instruction suffix in leal hints that the type of c is

an int: memory operand requires 8-byte register names, but the result (%rdx+%rdx*2=3*c into

%eax) should match the range of the input.

●​ %rdi holds a (1st arg). We know it’s a pointer because it is dereferenced in the addl instruction. The

“l” instruction suffix tells us it points to an int. This instruction adds the value in %eax to the value

that %rdi points to. We can write this in C as *a += 3*c.

●​ %esi holds b (2nd arg). The use of this register name as the source operand to movslq (using “l”) tells

us it is an int. This extension instruction is setup for the next instruction, which requires 8-byte register

names in its memory operand.

●​ The leaq instruction stores the result of %rdi+rsi*4, which is equivalent to the value of a+b*4.

However, since a is an int*, we can write this in C as a+b because of pointer arithmetic.

●​ By convention, %rax holds the return value of a function. When this function returns, %rax contains

the result of a+b.

Exercise 2: Avoid explode_bomb

Given the following x86-64 code, determine what input argument(s) avoid the call to explode_bomb:

401152 <decision>:
 401152: cmp $0x5,%edi
 401155: je 401167 <decision+0x15>
 401157: mov $0x40200a,%edi​ ​ ​ (0x40220a points to the
 40115c: mov $0x0,%eax​ ​ ​ ​ first argument of printf)
 401161: call 401030 <printf@plt>
 401166: ret
 401167: call 401136 <explode_bomb>
 40116c: jmp 401166 <decision+0x14>

The cmp instruction sets the flags register based on the result of %edi-5. Then, je will jump if this result is

equal to 0. This means that the code will take the jump to call explode_bomb if %edi== 5. Otherwise, it

prints the string stored at 0x40220a and returns.

So we want: %edi != 5

	CSE 351 Section 4 – Lab 2 Prep (x86-64, GDB)
	Exercise 1: x86 to C
	
	Exercise 2: Avoid explode_bomb

