
CSE 351 Section 3 – Numerical Representation Limits

IEEE 754 Floating Point Standard

Goals

★​ Represent a large range of values (i.e., both very small and very large numbers)

★​ Include a high amount of precision

★​ Allow for real arithmetic results (e.g., and NaN) ∞

Encoding

The value of a real number can be represented in normalized scientific binary notation as:

(-1)sign
 × Mantissa2 × 2Exponent

 = (-1)S
 × 1.M2 × 2E-bias

The binary representation for floating point encodes these three components into separate fields:

 S E M

 float bits: 1 8 23

double bits: 1 11 52

●​ S: The sign of the number (0 for positive, 1 for negative)
●​ E: The exponent in biased notation (unsigned with a bias of 2w-1-1)

●​ M: The mantissa (also called the significand or fraction) without implicit leading 1

Special Cases

E M Interpretation

0b0…0 0b0…0 ± 0
0b0…0 non-zero denormalized num ±

everything else anything normalized num ±
0b1…1 0b0…0 ± ∞
0b1…1 non-zero NaN

Floating Point Limitations

●​ Overflow: Result has larger magnitude/exponent than largest normalized number () → ∞
●​ Underflow: Result has smaller magnitude/exponent than smallest denormalized number () → 0
●​ Rounding: Result falls between two representable numbers (one of the representable numbers) →

Mathematical Properties

●​ Not associative: (2 + 250) – 250 ≠ 2 + (250 – 250)

●​ Not distributive: 100 × (0.1 + 0.2) ≠ 100 × 0.1 + 100 × 0.2

●​ Not cumulative: 225 + 1 + 1 + 1 + 1 ≠ 225 + 4

Exercise 1: Averaging

/* Returns the average of the numbers in arr */

float average(int* arr, int n) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += arr[i];
 }
 return sum / n;
}

Issue?

Fix?

Exercise 2: Bank Account

/* Subtracts the given amount from the bank account balance, then returns
the amount withdrawn */

float withdraw(float* balance, float amt) {
 if (amt > *balance) { return 0; }
 *balance -= amt;
 return amt;
}

Issue?

Fix?

Integers and Arithmetic Overflow

Arithmetic overflow occurs when the result of a calculation can’t be
represented in the current encoding scheme (i.e., it lies outside of the
representable range of values), resulting in an incorrect value.

●​ Unsigned overflow: The result lies outside of [UMin, UMax];​
an indicator of this is when you add two numbers and the​
result is smaller than either number.

●​ Signed overflow: The result lies outside of [TMin, TMax]; an ​
indicator of this is when you add two numbers with the ​
same sign and the result has the opposite sign.

Lab 1b Prep: Tennis! (Past Midterm Question)

Doubles tennis is played with 2 players to a side. Your tennis club is tracking the performances of player

pairings using a 16-bit encoding scheme:

 +--+
 | perf score | ID #1 | ID #2 |
 +--+
Bits: 15-12 11-6 5-0

●​ Each player at the club has a unique ID.

●​ Player IDs in a pairing encoding must be distinct unsigned integers (e.g., ID 0b111000 = ID 56).

●​ The performance score is encoded using Two’s Complement, with more positive scores indicating

better performance.

Exercise 3: Encodings
How many unique player IDs can be represented in this scheme?

Exercise 4: Limitations
What are the constraints/limitations on the range of values for the performance score?

Exercise 5: Bit Masking
Write a bit mask that will result in the binary of the performance score of a given pairing x. Your answer

should have the 4 most significant bits set to the score and the 12 least significant bits set to 0.

Exercise 6: Bit Manipulation
Write a series of bit manipulations (i.e., shifting, using bitwise operators) to extract the ID of player #1

from a given pairing x. Your answer should have the 10 most significant bits set to 0 and the 6 least

significant bits set to the ID of player #1.

	CSE 351 Section 3 – Numerical Representation Limits
	IEEE 754 Floating Point Standard
	Goals
	Encoding
	Special Cases
	Floating Point Limitations
	Mathematical Properties

	
	Exercise 1: Averaging
	Exercise 2: Bank Account
	Integers and Arithmetic Overflow
	Lab 1b Prep: Tennis! (Past Midterm Question)
	Exercise 3: Encodings
	Exercise 4: Limitations
	Exercise 5: Bit Masking
	Exercise 6: Bit Manipulation

