
CSE 351 Section 3 – Numerical Representation Limits 

IEEE 754 Floating Point Standard 

Goals 

★​ Represent a large range of values (i.e., both very small and very large numbers) 

★​ Include a high amount of precision 

★​ Allow for real arithmetic results (e.g.,  and NaN) ∞

Encoding 

The value of a real number can be represented in normalized scientific binary notation as: 

(-1)sign
 × Mantissa2 × 2Exponent

 = (-1)S
 × 1.M2 × 2E-bias

   

The binary representation for floating point encodes these three components into separate fields: 

 S E M 

 float bits: 1 8 23 

double bits: 1 11 52 

●​ S: The sign of the number (0 for positive, 1 for negative)  
●​ E: The exponent in biased notation (unsigned with a bias of 2w-1-1) 

●​ M: The mantissa (also called the significand or fraction) without  implicit leading 1 

Special Cases 

E M Interpretation 

0b0…0 0b0…0  ± 0
0b0…0 non-zero  denormalized num ±

everything else anything  normalized num ±
0b1…1 0b0…0  ± ∞
0b1…1 non-zero NaN 

Floating Point Limitations 

●​ Overflow: Result has larger magnitude/exponent than largest normalized number ( ) → ∞
●​ Underflow: Result has smaller magnitude/exponent than smallest denormalized number ( ) → 0
●​ Rounding: Result falls between two representable numbers (  one of the representable numbers) →

Mathematical Properties 

●​ Not associative: (2 + 250) – 250 ≠ 2 + (250 – 250)  

●​ Not distributive: 100 × (0.1 + 0.2) ≠ 100 × 0.1 + 100 × 0.2  

●​ Not cumulative: 225 + 1 + 1 + 1 + 1 ≠ 225 + 4  

 



Exercise 1: Averaging 

/* Returns the average of the numbers in arr */ 

float average(int* arr, int n) { 
  int sum = 0; 
  for (int i = 0; i < n; i++) { 
    sum += arr[i]; 
  } 
  return sum / n; 
} 

Issue? 

 

Fix? 

 

Exercise 2: Bank Account 

/* Subtracts the given amount from the bank account balance, then returns 
the amount withdrawn */ 

float withdraw(float* balance, float amt) { 
  if (amt > *balance) { return 0; } 
  *balance -= amt; 
  return amt; 
} 

Issue? 

 

Fix? 

 

 

Integers and Arithmetic Overflow   

Arithmetic overflow occurs when the result of a calculation can’t be 
represented in the current encoding scheme (i.e., it lies outside of the 
representable range of values), resulting in an incorrect value.  

●​ Unsigned overflow: The result lies outside of [UMin, UMax];​
an indicator of this is when you add two numbers and the​
result is smaller than either number. 

●​ Signed overflow: The result lies outside of [TMin, TMax]; an ​
indicator of this is when you add two numbers with the ​
same sign and the result has the opposite sign. 



Lab 1b Prep: Tennis! (Past Midterm Question) 

Doubles tennis is played with 2 players to a side. Your tennis club is tracking the performances of player 

pairings using a 16-bit encoding scheme: 

     +----------------------------------------+ 
     | perf score |    ID #1    |    ID #2    | 
     +----------------------------------------+ 
Bits:     15-12        11-6           5-0 

●​ Each player at the club has a unique ID. 

●​ Player IDs in a pairing encoding must be distinct unsigned integers (e.g., ID 0b111000 = ID 56). 

●​ The performance score is encoded using Two’s Complement, with more positive scores indicating 

better performance. 

Exercise 3: Encodings 
How many unique player IDs can be represented in this scheme? 

 

Exercise 4: Limitations 
What are the constraints/limitations on the range of values for the performance score? 

 

 

Exercise 5: Bit Masking 
Write a bit mask that will result in the binary of the performance score of a given pairing x. Your answer 

should have the 4 most significant bits set to the score and the 12 least significant bits set to 0. 

 

 

 

 

 

Exercise 6: Bit Manipulation 
Write a series of bit manipulations (i.e., shifting, using bitwise operators) to extract the ID of player #1 

from a given pairing x. Your answer should have the 10 most significant bits set to 0 and the 6 least 

significant bits set to the ID of player #1. 
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