
CSE 351 Section 2 – Pointers, Bit Operators, Integers

Pointers

A pointer is a variable that holds an address. C uses pointers explicitly. If we have a variable x, then &x gives the

address of x, rather than the value of x. If we have a pointer p, then *p gives us the value that p points to, rather than

the value of p.

Consider the following declarations and assignments:​ int x; int* ptr = &x;

1)​ We can represent the result of these three lines of code visually as
shown. The variable ptr stores the address of x, and we say “ptr
points to x.” x currently has an unknown/mystery value since we did
not initialize it!

2)​ After executing x = 5;, the memory diagram changes as shown.

3)​ After executing *ptr = 200;, the memory diagram changes as
shown. We modified the value of x by dereferencing ptr.

Pointer Arithmetic

In C, arithmetic on pointers (++, +, --, -) is scaled by the size of the data type the pointer points to. That is, if p is

declared with pointer type* p, then p + i will change the value of p (an address) by i*sizeof(type) (in

bytes). If there is a line *p = *p + 1, regular arithmetic will apply unless *p is also a pointer datatype.

Exercise #1:

Draw out the memory diagram after the sequential execution of each of the lines below:

0 int main(int argc, char** argv) {
1 int x = 350; // assume &x = 0x10, &y = 0x14
2 int y[] = {410, 0}; // p is a pointer to an integer
3 int* p = y;
4 *p = x;
5 p = p + 4;
6 p = &x;
7 x = *p + 1;
8 }

Line 1 & 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

C Bitwise Operators

●​ AND (&) outputs a 1 only when both input bits are 1s.
●​ OR (|) outputs a 1 when either input bit is a 1.
●​ XOR (^) outputs a 1 when exactly one input bit is a 1.
●​ NOT (~) outputs the opposite of its input.

Masking is very commonly used with bitwise operations. A mask is a binary constant used to manipulate another bit
string in a specific manner, such as setting specific bits to 1 or 0.

Masking Example:

How would you replace the least significant byte of x of any length with 0xAA (e.g., 0x2134 → 0x21AA)?

1)​ Zero out the least significant byte with an AND mask:

x = x & ~0xFF;

2)​ Use an OR to set the last-significant byte:

x = x | 0xAA;

Exercise #2:

[Autumn 2019 Midterm Q1B] If signed char a = 0x88, complete the bitwise C statement so that b = 0xF1.
The first blank should be an operator, and the second blank should be a numeral.

b = a ___ 0x________

Exercise #3:

Design a series of bitwise operations (e.g., bit masks, bit shifts) to extract the sign bit of a signed int variable x.

	CSE 351 Section 2 – Pointers, Bit Operators, Integers
	Pointers
	Pointer Arithmetic
	Exercise #1:
	C Bitwise Operators
	Masking Example:
	Exercise #2:
	Exercise #3:

