CSE 351 Section 2 — Pointers, Bit Operators, Integers

Pointers

A pointer is a variable that holds an address. C uses pointers explicitly. If we have a variable x, then &x gives the
address of x, rather than the value of x. If we have a pointer p, then xp gives us the value that p points to, rather than
the value of p.

Consider the following declarations and assignments: int x; 1dntx ptr = &x;

1) We can represent the result of these three lines of code visually as L —]
shown. The variable ptr stores the address of x, and we say “ptr 1) ptr — | x| #22
points to x.” X currently has an unknown/mystery value since we did
not initialize it! 2) ptr — & s

2) After executing x = 53, the memory diagram changes as shown.

3) ptr — | % 200

3) After executing xptr = 200;, the memory diagram changes as
shown. We modified the value of x by dereferencing ptr.

Pointer Arithmetic
In C, arithmetic on pointers (++, +, ——, —) is scaled by the size of the data type the pointer points to. That is, if p is

declared with pointer type* p, thenp + 1 will change the value of p (an address) by i*sizeof (type) (in
bytes). If thereisaline xp = *xp + 1, regular arithmetic will apply unless *p is also a pointer datatype.

Exercise #1:

Draw out the memory diagram after the sequential execution of each of the lines below:

® 1int main(int argc, charxx argv) {
1 int x = 350; // assume &x = 0x10, &y = 0x14
2 int y[] = {410, 0}; // p is a pointer to an integer
3 intx p = vy;
4 *p = X;
5 p=p+ 4;
6 p = &x;
7 X = *p + 1
8 1}
Line1 & 2: Line 3: Line 4:

Line 5: Line 6: Line 7:

C Bitwise Operators

AND (&) outputs a 1 only when both input bits are 1s. 1010 1016 1010

[

e OR(|)outputs a 1 when either input bitis a 1. & 1100 | 1100 © A 11600 ~ 1010

® XOR (") outputs a 1 when exactly one input bitisa 1. : _
e NOT (~) outputs the opposite of its input. 5 1000 : 1110 : O11e 0101

Masking is very commonly used with bitwise operations. A mask is a binary constant used to manipulate another bit
string in a specific manner, such as setting specific bits to 1 or 0.

Masking Example:

How would you replace the least significant byte of x of any length with OxAA (e.g., 9x2134 — Ox21AA)?

1) Zero out the least significant byte with an AND mask: | Note that using ~8xFF (instead of !
| something like @xFFOE) allows us to !
X = x & ~OxFF; | handle an x of any length, as required: :
I
I
s g . I ~@xaROaearF
2) Use an OR to set the last-significant byte: | = 6xFFFFFFOM. :
: |
: I
" I

If x is 4 bytes, ~@xFF =
X = x | OxAA; If xis 2 bytes, ~0xFF = ~@xQ00FF =
BxFFOa,

Exercise #2:

[Autumn 2019 Midterm Q1B] If signed char a = 0x88, complete the bitwise C statement so thatb = OxF1.
The first blank should be an operator, and the second blank should be a numeral.

Exercise #3:

Design a series of bitwise operations (e.g., bit masks, bit shifts) to extract the sign bit of a signed {int variable x.

	CSE 351 Section 2 – Pointers, Bit Operators, Integers
	Pointers
	Pointer Arithmetic
	Exercise #1:
	C Bitwise Operators
	Masking Example:
	Exercise #2:
	Exercise #3:

