
CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

The Hardware/Software Interface
Memory Allocation II
The Hardware/Software Interface
Memory Allocation II

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate http://xkcd.com/1909/

http://xkcd.com/1909/

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Relevant Course Information

❖ HW19 due tonight, HW20 due Monday (11/17)

❖ Lab 4 due next Friday (11/21), closes Monday (11/24)

▪ The Cache Simulator is especially helpful for visualizing and debugging Part 1

▪ Cache images and more abstract thinking more helpful for Part 2
• Trace files can be used for nitty-gritty debugging

▪ Make sure you run the variable check for Part 2 to check for rules compliance

❖ Lab 5 (Memory Allocator) will be released on Monday (11/17), due last
Thursday (12/4)

▪ Implement part of malloc and free – maintain heap blocks and free list

▪ The most C programming you will do in this class (still not a ton)
2

https://courses.cs.washington.edu/courses/cse351/cachesim/

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Lecture Outline (0/3)

❖ Heap Implementation Basics (from Lecture 20)

❖ Allocation and Splitting

❖ Deallocation and Coalescing

❖ Explicit Free Lists

3

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Knowing How Much to Free

❖ Standard method: keep the length of a block in the word preceding the
data called the header field or header

▪ Requires an extra word for every allocated block

4

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Header Information

❖ For each block we need: size, is-allocated?

❖ Standard trick: Use lowest bit as an allocated/free flag

▪ If blocks are aligned (𝐾>1), some
low-order bits of size are always 0:

▪ When reading size, must remember to mask out this bit!

5

Format of
heap blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

free block

a

unused space
(mystery data)

e.g., with 8-byte alignment: 00001000 = 8 bytes
 00010000 = 16 bytes
 00011000 = 24 bytes

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

 size | a;

 x & 1;

 x & ~1;

size

allocated block

payload

a

optional
padding

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using arithmetic
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
6

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Implicit Free List Example

❖ Each block begins with header (size in bytes and is-allocated? bit)

❖ Heap blocks (size|is-allocated?): 16|0, 32|1, 64|0, 32|1

❖ 16-byte alignment for (1) heap block size and (2) payload address

▪ Padding for size is considered part of previous heap block (internal fragmentation)

▪ May require initial padding at start of heap

❖ Special one-word marker (0|1) marks end of list

▪ Zero size is distinguishable from all other blocks
7

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

16 bytes = 2-word alignment

= 8-byte word

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Lecture Outline (1/3)

❖ Allocation and Splitting

❖ Deallocation and Coalescing

❖ Explicit Free Lists

8

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Fulfilling an Allocation Request (Review)

1) Compute the necessary block size

2) Search for a suitable free block using the allocator's allocation strategy

▪ If found, continue

▪ If not found, return NULL

3) Compare the necessary block size against the size of the chosen block

▪ If equal, allocate the block

▪ If not, split off the excess into a new free block before allocating the block

4) Return the address of the beginning of the payload

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Necessary Block Size (Review)

❖ For malloc(𝑛):

▪ Payload size: 𝑛

▪ Metadata: (for now) size of the header (ℎ)

▪ Padding: add to (𝑛 + ℎ) to reach nearest multiple of alignment

❖ Example code for alignment requirement of 16:

▪ size = ((n+h+15) >> 4) << 4; // round up to multiple of 16

❖ Minimum block size: Smallest possible block that we can allocate

▪ Determined by max requirements for allocated and free blocks in implementation

▪ Another way to think about this is what size is allocated on malloc(1)

10

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Allocation Strategies: First Fit (Review)

❖ First fit: Search the free list from the beginning & choose first
free block that fits

▪ Can take time linear in total number of blocks

▪ In practice, can cause “splinters” at beginning of list

▪ Pseudocode for implicit free list:

11

p = heap_start;
while ((p < end) && // not past end
 ((*p & 1) || // already allocated
 (*p <= len))) { // too small
 p = p + (*p & ~1); // go to next block (UNSCALED +)
} // p points to selected block or end

Header operations:
*p fetch block header x
*p & 1 extracts is-alloc?
*p & ~1 extracts size

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Allocation Strategies: Next fit, Best fit (Review)

❖ Next fit: Search the free list starting where previous search
finished (wrap around at end of heap) & choose first free block that fits

▪ Should often be faster than first-fit: avoids re-scanning unhelpful blocks

▪ Some research suggests that fragmentation is worse

❖ Best fit: Search the entire free list & choose the best free block (i.e., large
enough with fewest bytes left over)

▪ Keeps fragments small – usually helps fragmentation

▪ Usually worse throughput
12

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Allocation Strategy Example (Review)

❖ The current state of the heap is shown below:

▪ Headers are 8 bytes

▪ Block B5 was the last fulfilled request (one possible sequence of requests is:
allocate B1, allocate B2, allocate B3, allocate B4, allocate B5, free B4, free B2)

❖ Calling malloc(8):

▪ First fit: Allocate after B1, since we search from the start of the heap

▪ Next fit: Allocate after B5, since we search from the end of B5

▪ Best fit: Allocate after B3, since the available space is the closest fit to the
requested payload size

13

= 8-byte word (free)

= 8-byte word (allocated)

start of heap → B1 B3 B5 ← end of heapFirst NextBest

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Free Block Conversion

❖ If selected free block is the same size as the chosen block,
convert to allocated

❖ If selected free block is larger than necessary block size, then
need to split to create a new, smaller leftover free block first

▪ Pseudocode:

▪ Exception: What if leftover space after splitting < minimum block size?

14

void split(ptr fb, int bsize) { // bsize = necessary block size
 int oldsize = *fb; // why not mask out low bit?
 *fb = bsize | 1; // resize and allocate
 if (bsize < oldsize)
 *(fb+bsize) = oldsize - bsize; // set length in remaining
} // part of block (UNSCALED +)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Allocation Request Example (Review)

1) Compute the necessary block size

2) Search for a suitable free block

3) Allocate the chosen block, splitting as necessary

4) Return payload address

15

void* malloc(size_t n) {
 int bsize = ((n+WORD+15)>>4)<<4;
 ptr fb = find(bsize);
 split(fb, bsize);
 return (void*)(fb+WORD);
}

Free word

Allocated word

Newly-allocated
word

16|1 16|148|0

fb

16|016|1 16|132|1

malloc(24):

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Lecture Outline (2/3)

❖ Allocation and Splitting

❖ Deallocation and Coalescing

❖ Explicit Free Lists

16

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Deallocating a Block (Review)

❖ Simplest implementation just clears “is-allocated?” flag

▪ void free(ptr p) {*(p-WORD) &= ~1;} // UNSCALED -

▪ But can lead to “false fragmentation”:

17

p

Oops! There is enough free space, but the
allocator won’t be able to find it

16|016|1 16|132|1
Free word

Allocated word

Block of interest
16|016|1 16|132|0

malloc(40)

free(p)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Coalescing with Following Block (Review)

❖ Join (coalesce) with
following block
if also free:

▪ Pseudocode:

❖ How do we coalesce with the preceding block?
18

void free(ptr p) { // p points to payload
 ptr hd = p – WORD; // hd points to header
 *hd &= ~1; // clear allocated bit
 ptr next = hd + *hd; // find next block (UNSCALED +)
 if (!(*next & 1)) // if following block is not allocated,
 *hd += *next; // add its size to this block
}

logically gone

16|016|1 16|132|1

16|016|1 16|148|0free(p)

p

Free word

Allocated word

Block of interest

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Bidirectional Coalescing (Review)

❖ Boundary tags [Knuth73]

▪ Replicate header at end of heap blocks

▪ Allows us to traverse backwards, but requires extra space

▪ Everything from “Allocation and Splitting” should be reconsidered with footers!
19

32/0 32/0 32/1 32/1 48/0 32/148/0 32/1

Footer

Header size

payload and
padding

a

size a

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

Boundary tags

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Constant Time Coalescing: Cases (Review)

20

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being freed

Case 1 Case 2 Case 3 Case 4

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Constant Time Coalescing: Updates (Review)

m1 1

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Case 1 m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Case 2

m1 0

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Case 3 m1 0

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Case 4

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Lecture Outline (3/3)

❖ Allocation and Splitting

❖ Deallocation and Coalescing

❖ Explicit Free Lists

22

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
23

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Recall: Doubly-Linked Lists

❖ Linear

▪ Needs head/root pointer

▪ First node prev pointer is NULL

▪ Last node next pointer is NULL

▪ Good for first-fit, best-fit

❖ Circular

▪ Still have pointer to tell you which node to start with

▪ No NULL pointers (term condition is back at starting point)

▪ Good for next-fit, best-fit

24

Root ⋅⋅⋅

Start ⋅⋅⋅

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Explicit Free List Blocks (Review)

❖ Use list(s) of free blocks, rather than implicit list of all blocks

▪ The “next” free block could be anywhere in the heap
• So we need to store next/previous pointers, not just sizes

▪ Since we only track free blocks, so we can use “payload” for pointers
• These free list pointers affect the minimum block size!

▪ Still need boundary tags (header/footer) for coalescing
25

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Polling Question

❖ Determine the minimum block size (MBS) for the given memory
allocators, assuming:

▪ Allocated blocks must have a payload size ≥ 1 B

▪ Boundary tags (headers and footers) are 8 B each

26

Free List
Type

Alloc. Block
Boundaries

Free Block
Boundaries

Alignment Alloc. Block
MBS

Free Block
MBS

MBS

Implicit header &
footer

header &
footer

8-byte

Explicit header header &
footer

8-byte

Explicit header &
footer

header &
footer

16-byte

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Explicit Free List Organization

❖ Logically: doubly-linked list

❖ Physically: blocks can be in any order

❖ Terminology:

▪ “previous” and “next” blocks are part of the free list

▪ “preceding” and “following” blocks are physical neighbors

27

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C D

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Allocating From Explicit Free Lists: Splitting

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g., start/header of a block).

28

Before

After
(with splitting)

= malloc(…)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Allocating From Explicit Free Lists: Full Allocation

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g., start/header of a block).

29

Before

After
(fully allocated)

= malloc(…)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Deallocating With Explicit Free Lists

❖ Insertion policy: Where in the free list do you put the newly
freed block?

▪ LIFO (last-in-first-out) policy
• Insert freed block at the beginning (head) of the free list

• Pro: simple and constant time

• Con: studies suggest fragmentation is worse than the alternative

▪ Address-ordered policy
• Insert freed blocks so that free list blocks are always in address order:

 address(previous) < address(current) < address(next)

• Con: requires linear-time search

• Pro: studies suggest fragmentation is better than the alternative

30

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Coalescing in Explicit Free Lists

❖ Neighboring free blocks are already part of the free list

1) Remove old block from free list

2) Create new, larger coalesced block

3) Add new block to free list (insertion policy)

❖ How do we tell if a neighboring block is free?

31

Block being freed
Allocated

Allocated

Case 1

Allocated

Free

Case 2

Free

Allocated

Case 3

Free

Free

Case 4

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Freeing with LIFO Policy (Case 1)

❖ Insert the freed block at the root of the list

32

Before

After

Root

Boundary tags not
shown, but don’t

forget about them!

free()

Root

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Freeing with LIFO Policy (Case 2)

❖ Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

33

Boundary tags not
shown, but don’t

forget about them!

Before

Root

free()

After

Root

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Freeing with LIFO Policy (Case 3)

❖ Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

34

Boundary tags not
shown, but don’t

forget about them!

Before

Root

free()

After

Root

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Freeing with LIFO Policy (Case 4)

❖ Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

35

Boundary tags not
shown, but don’t

forget about them!

Before

Root

free()

After

Root

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Do we always need the boundary tags?

❖ Lab 5 suggests no…

36

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Summary: Fulfilling an Allocation Request

1) Compute the necessary block size

2) Search for a suitable free block using the allocator's allocation strategy

▪ If found, continue

▪ If not found, return NULL

3) Compare the necessary block size against the size of the chosen block

▪ If equal, allocate the block

▪ If not, split off the excess into a new free block before allocating the block

4) Return the address of the beginning of the payload

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Summary: Constant Time Coalescing

m1 1

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Case 1 m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Case 2

m1 0

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Case 3 m1 0

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Case 4

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

❖ Comparison with implicit list:

▪ Block allocation is linear time in number of free blocks instead of all blocks

• Much faster when most of the memory is full

▪ Slightly more complicated allocate and free since we need to splice blocks in and
out of the list

▪ Some extra space for the links (2 extra pointers needed for each free block)
• Increases minimum block size, leading to more internal fragmentation

Summary: Explicit List Summary

39

32 32 33 33 4848 3233 33 32

Forward (next) links

Back (prev) links

A B

C D

size

payload and
padding

a

size a

Allocated block:

size a

size a

next

prev

Free block:

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

The following slides are about the SegList Allocator, for those curious. You
will NOT be expected to know this material.

40

BONUS SLIDES

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
41

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

Segregated List (SegList) Allocators

❖ Each size class of blocks has its own free list

❖ Organized as an array of free lists

❖ Often have separate classes for each small size

❖ For larger sizes: One class for each two-power size

42

32

48-64

80-inf

16

Size class
(in bytes)

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

SegList Allocator

❖ Have an array of free lists for various size classes

❖ To allocate a block of size 𝑛:

▪ Search appropriate free list for block of size 𝑚 ≥ 𝑛

▪ If an appropriate block is found:
• [Optional] Split block and place free fragment on appropriate list

▪ If no block is found, try the next larger class
• Repeat until block is found

❖ If no block is found:
▪ Request additional heap memory from OS (using sbrk)

▪ Place remainder of additional heap memory as a single free block in appropriate
size class

43

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

SegList Allocator

❖ Have an array of free lists for various size classes

❖ To free a block:

▪ Mark block as free

▪ Coalesce (if needed)

▪ Place on appropriate class list

44

CSE351IntroductionL21: Memory Allocation II CSE351, Autumn 2025

SegList Advantages

❖ Higher throughput

▪ Search is log time for power-of-two size classes

❖ Better memory utilization

▪ First-fit search of seglist approximates a best-fit search of entire heap

▪ Extreme case: Giving every block its own size class is no worse than best-fit search
of an explicit list

▪ Don’t need to use space for block size for the fixed-size classes

45

	Slide 1: The Hardware/Software Interface Memory Allocation II
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline (0/3)
	Slide 4: Knowing How Much to Free
	Slide 5: Header Information
	Slide 6: Keeping Track of Free Blocks
	Slide 7: Implicit Free List Example
	Slide 8: Lecture Outline (1/3)
	Slide 9: Fulfilling an Allocation Request (Review)
	Slide 10: Necessary Block Size (Review)
	Slide 11: Allocation Strategies: First Fit (Review)
	Slide 12: Allocation Strategies: Next fit, Best fit (Review)
	Slide 13: Allocation Strategy Example (Review)
	Slide 14: Free Block Conversion
	Slide 15: Allocation Request Example (Review)
	Slide 16: Lecture Outline (2/3)
	Slide 17: Deallocating a Block (Review)
	Slide 18: Coalescing with Following Block (Review)
	Slide 19: Bidirectional Coalescing (Review)
	Slide 20: Constant Time Coalescing: Cases (Review)
	Slide 21: Constant Time Coalescing: Updates (Review)
	Slide 22: Lecture Outline (3/3)
	Slide 23: Keeping Track of Free Blocks
	Slide 24: Recall: Doubly-Linked Lists
	Slide 25: Explicit Free List Blocks (Review)
	Slide 26: Polling Question
	Slide 27: Explicit Free List Organization
	Slide 28: Allocating From Explicit Free Lists: Splitting
	Slide 29: Allocating From Explicit Free Lists: Full Allocation
	Slide 30: Deallocating With Explicit Free Lists
	Slide 31: Coalescing in Explicit Free Lists
	Slide 32: Freeing with LIFO Policy (Case 1)
	Slide 33: Freeing with LIFO Policy (Case 2)
	Slide 34: Freeing with LIFO Policy (Case 3)
	Slide 35: Freeing with LIFO Policy (Case 4)
	Slide 36: Do we always need the boundary tags?
	Slide 37: Summary: Fulfilling an Allocation Request
	Slide 38: Summary: Constant Time Coalescing
	Slide 39: Summary: Explicit List Summary
	Slide 40
	Slide 41: Keeping Track of Free Blocks
	Slide 42: Segregated List (SegList) Allocators
	Slide 43: SegList Allocator
	Slide 44: SegList Allocator
	Slide 45: SegList Advantages

