YA UNIVERSITY of WASHINGTON

L21: Memory Allocation Il

The Hardware/Software Interface

Memory Allocation Il

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen

Rose Maresh Soham Bhosale

Violet Monserate

MY ACCESS To RESOURCES ON [SUBJTECT] OVER TIME:

CSE351, Autumn 2025

1985 1950 1995 2000 2005 2010 205 2070

RBOOK ON
SUBTECT
[suBTECT] PDF
SITE GOES [DOUN, BACKEND
[SUBTECT] WEB DATABASE DATA NOT ON Pﬁﬂms
[SUBTECT] MOBILE. APP mm RNS
(LOeAL UNIVERSITY PROTELT)
(SUBTECT] ANALYSIS SOFTLIARE |-=—§5‘ T oD
INTERACTIVE [SUBTECT] CD-ROM Ensmcnuéw%umw
LIBRARY MICROFILIM
[SUBTECT] COLLECTION

IT¥ UNSETTUNG To REALIZE: HOL) QUICKLY DIGTAL RESOURLES
CAN DISAPPERR WITHOUT ONGOING LJORK TO MAINTAIN THEM.

http://xkcd.com/1909/

http://xkcd.com/1909/

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Relevant Course Information

+» HW19 due tonight, HW20 due Monday (11/17)

+ Lab 4 due next Friday (11/21), closes Monday (11/24)
" The Cache Simulator is especially helpful for visualizing and debugging Part 1

= Cache images and more abstract thinking more helpful for Part 2
- Trace files can be used for nitty-gritty debugging

= Make sure you run the variable check for Part 2 to check for rules compliance

+» Lab 5 (Memory Allocator) will be released on Monday (11/17), due last
Thursday (12/4)

" Implement part of malloc and free — maintain heap blocks and free list
" The most C programming you will do in this class (still not a ton)

https://courses.cs.washington.edu/courses/cse351/cachesim/

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Lecture Outline (0/3)

+ Heap Implementation Basics (from Lecture 20)
+ Allocation and Splitting

+ Deallocation and Coalescing

+ Explicit Free Lists

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

+» Standard method: keep the length of a block in the word preceding the
data called the header field or header

= Requires an extra word for every allocated block

po
v
pO@ = malloc(32) 40
block size data

free(p0)

YA UNIVERSITY of WASHINGTON

Header Information

L21: Memory Allocation Il

+ For each block we need: s1ze, is-allocated?

« Standard trick: Use lowest bit as an a

" |If blocks are aligned (K>1), some
low-order bits of s1ze are always O:

located/free flag

e.g., with 8-byte alignment: 00001000 = 8 bytes

00010000 = 16 bytes
00011000 = 24 bytes

= When reading s1ze, must remember to mask out this bit!

Format of
heap blocks:

allocated block free block
Size a Size
payload
unused space
(mystery data)
optional

padding

a=1: allocated block
a =0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

If X is first word (header):
X = size | a;

a = x & 1;

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using arithmetic
"= No actual pointers, and must check each block if allocated or free

-—— -y

- ~ P -~
-~ ' O Na. ” S a

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

10| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within
each free block, and the length used as a key

CSE351, Autumn 2025

L21: Memory Allocation Il

YA UNIVERSITY of WASHINGTON

= 8-byte word

Implicit Free List Example

+ Each block begins with header (size in bytes and is-allocated? bit)
+» Heap blocks (size|is-allocated?): 16]|0, 32|1, 64]|0, 32|1

Start of heap
Free word
1610, 321 640 32|1 % Allocated word
Allocated word
\/ unused

16 bytes = 2-word alignment

+ 16-byte alignment for (1) heap block size and (2) payload address
= Padding for size is considered part of previous heap block (internal fragmentation)

= May require initial padding at start of heap

+ Special one-word marker (0| 1) marks end of list
= Zero s1ize is distinguishable from all other blocks

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Lecture Outline (1/3)

+ Allocation and Splitting
+ Deallocation and Coalescing
+ Explicit Free Lists

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Fulfilling an Allocation Request (Review)

1) Compute the necessary block size

2) Search for a suitable free block using the allocator's allocation strategy

= |f found, continue
= |f not found, return NULL

3) Compare the necessary block size against the size of the chosen block

= |f equal, allocate the block
= |f not, split off the excess into a new free block before allocating the block

4) Return the address of the beginning of the payload

YA UNIVERSITY of WASHINGTON L21: Memory Allocation I CSE351, Autumn 2025

Necessary Block Size (Review)

« Formalloc(n):
= Payload size: n
= Metadata: (for now) size of the header (h)

= Padding: add to (n + h) to reach nearest multiple of alignment

+» Example code for alignment requirement of 16:
" |size = ((nth+15) >>4) <<4; // roundup tomultiple of 16

«» Minimum block size: Smallest possible block that we can allocate

= Determined by max requirements for allocated and free blocks in implementation
= Another way to think about this is what size is allocated on malloc (1)

10

YA UNIVERSITY of WASHINGTON

L21: Memory Allocation Il

Allocation Strategies: First Fit (Review)

p_ = heap_start

160 32/

64(0 321

CSE351, Autumn 2025

Free word

Allocated word

Allocated word
unused

<« First fit: Search the free list from the beginning & choose first

free block that fits

® Can take time linear in total number of blocks

" |n practice, can cause

“splinters” at beginning of list

" Pseudocode for implicit free list:

p = heap_start;
while ((p < end) &&
((*p & 1) ||
(xp <= len))) {
p=p+t (*p & ~1);
}

// not past end

// already allocated

// too small

// go to next block (UNSCALED +)

// p points to selected block or end

Header operations:

*p fetch block header x
*p & 1 extracts is—alloc?
*xp & ~1 extracts size

11

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Allocation Strategies: Next fit, Best fit (Review)

p_ = heap_start

Free word

16100 1321 640 32|1 Allocated word

Allocated word
unused

+ Next fit: Search the free list starting where previous search
finished (wrap around at end of heap) & choose first free block that fits

= Should often be faster than first-fit: avoids re-scanning unhelpful blocks

" Some research suggests that fragmentation is worse

+ Best fit: Search the entire free list & choose the best free block (i.e., large
enough with fewest bytes left over)
= Keeps fragments small — usually helps fragmentation

= Usually worse throughput .

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

= 8-byte word (free)

Allocation Strategy Example (Review)

= 8-byte word (allocated)

+» The current state of the heap is shown below:
" Headers are 8 bytes

= Block B5 was the last fulfilled request (one possible sequence of requests is:
allocate B1, allocate B2, allocate B3, allocate B4, allocate B5, free B4, free B2)

start of heap — | Bl I B3 B5 < end of heap

+» Callingmalloc(8):
o . Allocate , since we search from the start of the heap

= Next fit: Allocate after B5, since we search from the end of B5

= Best fit: Allocate after B3, since the available space is the closest fit to the
requested payload size

13

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Free Block Conversion

» If selected free block is the same size as the chosen block,
convert to allocated

» |f selected free block is larger than necessary block size, then
need to split to create a new, smaller leftover free block first

" Pseudocode:

void split(ptr fb, int bsize) { // bsize = necessary block size
int oldsize = xfb; // why not mask out low bit?
xfb = bsize | 1; // resize and allocate

if (bsize < oldsize)
x(fbtbsize) = oldsize - bsize; // set length in remaining
} // part of block (UNSCALED +)

= Exception: What if leftover space after splitting < minimum block size?

CSE351, Autumn 2025

14

YA UNIVERSITY of WASHINGTON

L21: Memory Allocation Il

CSE351, Autumn 2025

Allocation Request Example (Review)

1
2) Search for a suitable free block

4) Return payload address

Compute the necessary block size

void*x malloc(size_t n) {
int bsize = ((n+WORD+15)>>4)<<4;
ptr fb = find(bsize);
split(fb, bsize);
return (voidx) (fb+WORD) ;

)
)

3) Allocate the chosen block, splitting as necessary
)

malloc(24):
/~\ =TT T~
/ o~ S a
1611|480 16]1
b
//-.\o”——\\\/"\
1611 (321 160 161

Free word
Allocated word

Newly-allocated
word

15

YA/ UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Lecture Outline (2/3)

% Allocation and Splitting
+ Deallocation and Coalescing
+ Explicit Free Lists

16

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Deallocating a Block (Review)

+ Simplest implementation just clears “is-allocated?” flag

" | void free(ptr p) {*x(p-WORD) &= ~1;} // UNSCALED -
" But can lead to “false fragmentation”:

/ 4 w/ D'\
16]1 32|1“ 160 161 ree word
p Allocated word
/’Q\«”—-\\w"\ Block of interest
free(p) 16/1 (320 1610 16|t
malloc (40) Oops! There is enough free space, but the

allocator won’t be able to find it

CSE351, Autumn 2025

17

YA UNIVERSITY of WASHINGTON

L21: Memory Allocation Il

Coalescing with Following Block (Review)

+ Join (coalesce) with
following block
if also free:

free(p)

" Pseudocode:

/ < N/ h'\
161 1321 16/0 |16|1
A
P
/- - = -~
/ - ~

1611 |48/0 1m¢‘1w

Free word
Allocated word

Block of interest

~ Jogically gone

void free(ptr p) {
ptr hd = p - WORD;
x*hd &= ~1;
ptr next = hd + xhd;
if (! (*next & 1))
*hd += *next;

}

// p points to payload

//
//
//
//
//

hd points to header
clear allocated bit
find next block (UNSCALED +)

1f following block i1s not allocated,

add i1ts size to this block

+» How do we coalesce with the preceding block?

CSE351, Autumn 2025

18

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

= 8-byte word (free)

Bidirectional Coalescing (Review)

= 8-byte word (allocated)

« Boundary tags [Knuth73]
= Replicate header at end of heap blocks

"= Allows us to traverse backwards, but requires extra space

’—-5\ ’—-5\ ”——-~

P S ” Sa.” T~a
32/0 32/0/32/1 32/1148/0 48/0132/1 3211
AN "< _ -7~ P

Format of Header size a| a=1: allocated block
allocated and % a = 0: free block
free blocks:
payloaql and size: block size (in bytes)
Boundary tags padding
| payload: application data
Footer size a| (allocated blocks only)

= A Everything from “Allocation and Splitting” should be reconsidered with footers!

19

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Constant Time Coalescing: Cases (Review)

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

20

YA UNIVERSITY of WASHINGTON

CSE351, Autumn 2025

L21: Memory Allocation Il

Constant Time Coalescing: Updates (Review)

m1l

Case 1

m1l

n

m2

m2

Case 3

m1

m1

m?2

m?2

mi_ [1l Case?2
m1 1
n 0
n 0
m?2 1
m?2 1
n+ml 0 Case 4
n+ml 0
m?2 1
m?2 1

m1

m1l

m1l

m1l

n

n+m?2

m?2

m?2

n+m?2

m1

n+ml+m?2

m1

m?2

m?2

n+ml+m?2

YA/ UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Lecture Outline (3/3)

% Allocation and Splitting
% Deallocation and Coalescing
+ Explicit Free Lists

22

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

= 8-byte word (free)

Keeping Track of Free Blocks

= 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

—-— — -y — N
_ - S o ’/ \\ - ~
- V2 A L'

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

10| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
23

YA UNIVERSITY of WASHINGTON

L21: Memory Allocation Il

Recall: Doubly-Linked Lists

Linear Root

= Needs head/root pointer

¢

~

O

= First node prev pointeris NULL

= Last node next pointeris NULL

" Good for first-fit, best-fit

Circular Start

N\

¢

o

= Still have pointer to tell you which node to start with

"= No NULL pointers (term condition is back at starting point)

" Good for next-fit, best-fit

“ "5

—_

P

CSE351, Autumn 2025

24

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Explicit Free List Blocks (Review)

Allocated block: Free block:
Size a Size a
next
payload and A
padding
Size a size a

(same as implicit free list)

+ Use list(s) of free blocks, rather than implicit list of all blocks
" The “next” free block could be anywhere in the heap

- So we need to store next/previous pointers, not just sizes

= Since we only track free blocks, so we can use “payload” for pointers
- These free list pointers affect the minimum block size!

= Still need boundary tags (header/footer) for coalescing

CSE351, Autumn 2025

25

YA UNIVERSITY of WASHINGTON

Polling Question

allocators, assuming:

" Allocated blocks must have a payload size > 1 B

= Boundary tags (headers and footers) are 8 B each

L21: Memory Allocation Il

+ Determine the minimum block size (MBS) for the given memory

Free List Alloc. Block Free Block Alignment Alloc. Block Free Block
Type Boundaries Boundaries
Implicit | header & header & 8-byte

footer footer
Explicit | header header & 8-byte

footer

Explicit | header & header & 16-byte

footer footer

CSE351, Autumn 2025

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Explicit Free List Organization

+ Logically: doubly-linked list

A |1 B [

e

+ Physically: blocks can be in any order .

/ Forward (next) links
A /Q B

32 ’//5 32 32 4 / N 48|32 32 32 \ 32

~
‘K C _V
Back (prev) links

+» Terminology:
= “previous” and “next” blocks are part of the free list

0o 4

= “preceding” and “following” blocks are physical neighbors

27

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Allocating From Explicit Free Lists: Splitting

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g., start/header of a block).

Before

=

After
(with splitting)

1Y

28

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Allocating From Explicit Free Lists: Full Allocation

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g., start/header of a block).

Before

=

After
(fully allocated)

= malloc(..)

CSE351, Autumn 2025

29

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Deallocating With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the newly
freed block?

= LIFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
- Pro: simple and constant time
- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search
- Pro: studies suggest fragmentation is better than the alternative

30

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

4

L)

» Neighboring free blocks are already part of the free list
1) Remove old block from free list

2) Create new, larger coalesced block

3) Add new block to free list (insertion policy)

4

L)

» How do we tell if a neighboring block is free?

31

YA UNIVERSITY of WASHINGTON L21: Memory Allocation I CSE351, Autumn 2025

Freeing with LIFO Policy (Case 1) [;;‘;’;V;rgjfii,:f’:]

forget about them!

Before free (@)

Root LI @)

Insert the freed block at the root of the list

After

S 7

32

YA UNIVERSITY of WASHINGTON L21: Memory Allocation I CSE351, Autumn 2025

Freeing with LIFO Policy (Case 2) [fB“gV;bgtfh;t]
Before free(®) o
Root I LI O
4!

+ Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O

o ¢
_

33

YA UNIVERSITY of WASHINGTON L21: Memory Allocation I CSE351, Autumn 2025

Freeing with LIFO Policy (Case 3) [fB“g“;bzti%h;t]
Before o free(®)
Root i LI O
4!

« Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root H

0 <
O

34

YA UNIVERSITY of WASHINGTON L21: Memory Allocation I CSE351, Autumn 2025

forget about them!

Freeing with LIFO Policy (Case 4) [;;,‘;’;V;rgjfii,:f’:]

Before free (@)

1

it T

» Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

After

Root H

35

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and R
padding
Size a Size a

(same as implicit free list)

+» Lab 5 suggests no...

36

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

Summary: Fulfilling an Allocation Request

1) Compute the necessary block size

2) Search for a suitable free block using the allocator's allocation strategy

= |f found, continue
= |f not found, return NULL

3) Compare the necessary block size against the size of the chosen block

= |f equal, allocate the block
= |f not, split off the excess into a new free block before allocating the block

4) Return the address of the beginning of the payload

YA UNIVERSITY of WASHINGTON

Summary: Constant Time Coalescing

Case 1

Case 3

L21: Memory Allocation Il

m1l

m1l

n

m2

m2

m1

m1

m?2

m?2

mi 1l Case?2
m1 1
n 0
n 0
m2 1
m?2 1
n+ml 0 Case 4
n+ml 0
m?2 1
m?2 1

m1l

m1l

m1l

m1l

n+m?2

m?2

m?2

n+m?2

m1

n+ml+m?2

m1

m?2

m?2

n+ml+m?2

CSE351, Autumn 2025

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Summary: Explicit List Summary

Allocated block: Free block:

B
v

size a

Size a
/ Forward (next) links next
A /Q . vayload and prev

320 —7 32|33 3348 /| - 48133 33/32/ 32 padding

™.
K Cc ~_ Db —
Back (prev) links

+» Comparison with implicit list:
= Block allocation is linear time in number of free blocks instead of all blocks
- Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice blocks in and
out of the list

= Some extra space for the links (2 extra pointers needed for each free block)

- Increases minimum block size, leading to more internal fragmentation

0o 4

size a size a

39

YA/ UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

BONUS SLIDES

The following slides are about the SegList Allocator, for those curious. You
will NOT be expected to know this material.

40

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

— —

~—y - ~ ’——-N
- ~ P - ~
” Vo4 \A/’ \'L

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

10| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
41

YA UNIVERSITY of WASHINGTON

L21: Memory Allocation Il

CSE351, Autumn 2025

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
« Organized as an array of free lists

Size class
(in bytes)

16 — — - —

32

\ 4

l

48-64

l

80-inf

X/

+ Often have separate classes for each small size

X/

+~ For larger sizes: One class for each two-power size

42

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

SeglList Allocator

« Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of sizem = n

" |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" If no block is found, try the next larger class

- Repeat until block is found

+ If no block is found:
" Request additional heap memory from OS (using sbrk)

= Place remainder of additional heap memory as a single free block in appropriate
size class

43

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

SeglList Allocator

« Have an array of free lists for various size classes

+ To free a block:
= Mark block as free
= Coalesce (if needed)
" Place on appropriate class list

44

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2025

SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+ Better memory utilization
" First-fit search of seglist approximates a best-fit search of entire heap

= Extreme case: Giving every block its own size class is no worse than best-fit search
of an explicit list

" Don’t need to use space for block size for the fixed-size classes

45

	Slide 1: The Hardware/Software Interface Memory Allocation II
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline (0/3)
	Slide 4: Knowing How Much to Free
	Slide 5: Header Information
	Slide 6: Keeping Track of Free Blocks
	Slide 7: Implicit Free List Example
	Slide 8: Lecture Outline (1/3)
	Slide 9: Fulfilling an Allocation Request (Review)
	Slide 10: Necessary Block Size (Review)
	Slide 11: Allocation Strategies: First Fit (Review)
	Slide 12: Allocation Strategies: Next fit, Best fit (Review)
	Slide 13: Allocation Strategy Example (Review)
	Slide 14: Free Block Conversion
	Slide 15: Allocation Request Example (Review)
	Slide 16: Lecture Outline (2/3)
	Slide 17: Deallocating a Block (Review)
	Slide 18: Coalescing with Following Block (Review)
	Slide 19: Bidirectional Coalescing (Review)
	Slide 20: Constant Time Coalescing: Cases (Review)
	Slide 21: Constant Time Coalescing: Updates (Review)
	Slide 22: Lecture Outline (3/3)
	Slide 23: Keeping Track of Free Blocks
	Slide 24: Recall: Doubly-Linked Lists
	Slide 25: Explicit Free List Blocks (Review)
	Slide 26: Polling Question
	Slide 27: Explicit Free List Organization
	Slide 28: Allocating From Explicit Free Lists: Splitting
	Slide 29: Allocating From Explicit Free Lists: Full Allocation
	Slide 30: Deallocating With Explicit Free Lists
	Slide 31: Coalescing in Explicit Free Lists
	Slide 32: Freeing with LIFO Policy (Case 1)
	Slide 33: Freeing with LIFO Policy (Case 2)
	Slide 34: Freeing with LIFO Policy (Case 3)
	Slide 35: Freeing with LIFO Policy (Case 4)
	Slide 36: Do we always need the boundary tags?
	Slide 37: Summary: Fulfilling an Allocation Request
	Slide 38: Summary: Constant Time Coalescing
	Slide 39: Summary: Explicit List Summary
	Slide 40
	Slide 41: Keeping Track of Free Blocks
	Slide 42: Segregated List (SegList) Allocators
	Slide 43: SegList Allocator
	Slide 44: SegList Allocator
	Slide 45: SegList Advantages

