YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

The Hardware/Software Interface

Memory Allocation | WHEN WILL WE FORGET?
BASED ON S (OENSUs BUREAV
NATIONAL FOPULATION [AROTECTIONS
ASEIMING WE DON'T REMEMBER CULTURAL
Instructors: OIS VAL emRe N ok
. . Br THIS | THE MAJORTY OF AMERICANS
Amber Hu, Justin Hsia YER: | VI BE To0MONG 10 REHEVEER:
2022 | THE REPGAN PRESIDENG!
Teaching Assistants: ;‘;: THEBERL'::EW
Anthony Mangus Divya Ramu 2025 Msovgmusw
. 20% | THE LA
Grace Zhou Jessie Sun pl wﬁ_’;ﬁmw
Jiuyang Lyu Kanishka Singh <. vomme Hoege o %mﬁﬁﬁmﬁ
Kurt Gu Liander Rainbolt g ﬁ::ms TRIAL
Mendel Carroll Ming Yan 239 | WHt's Z 2o 76 %0 o
Naama Amiel Pollux Chen | R s
Rose Maresh Soham Bhosale 2042 | THE FIRST iFHONE
Violet Monserate oo compione” 27 1RO0BoR

https://xkcd.com/627/

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Relevant Course Information

+» HW 18 due tonight

2+ HW 19 due Friday (11/14)
= Lab 4 preparation!

2+ HW 20 due Monday (11/17)

+» Lab 4 due next Friday (11/21)

= Section tomorrow intended to help prepare you for Lab 4

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Mid-Quarter Feedback Survey Debrief

+» Midterm was difficult

= We will intentionally design the final to not be as difficult

» More practice with exam-style questions

= Make sure you go to section for exam-style questions

= Lab synthesis questions are short-answer

" Look at past exams, and ask questions on Ed or OH about the solutions

» More answer explanations on Ed readings and homeworks
+ Lectures are too fast

= Especially Amber
» Scheduling office hours to make it more accessible

= E.g. more online, weekend, weekday evening

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Aside: Growth vs. Fixed Mindset

+ Students can be thought of as having either a “growth” mindset
or a “fixed” mindset (based on research by Prof. Carol Dweck)

" “In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and then
their goal becomes to look smart all the time and never look dumb.”

"= “In a growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence. They don't necessarily
think everyone's the same or anyone can be Einstein, but they believe everyone
can get smarter if they work at it.”

+» Midterm clobber policy demonstrates how we want you to adopt a
growth mindset!

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Lecture Outline (1/5)

+» Cache Performance, Revisited

+» Dynamically Allocated Memory in C
+» Dynamic Memory Allocators

+» Heap Fragmentation

+» Heap Implementation Basics

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

AMAT, Revisited

+ Average Memory Access Time (AMAT): average time to access memory
considering both hits and misses

AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+ We called this a cache performance metric
® This isn’t the only metric we could have used!

CSE351, Autumn 2025

L20: Memory Allocation |

YA UNIVERSITY of WASHINGTON

Metrics in Computing

+ Generally, folks care most about performance
= Energy-efficiency is more important now since the plateau in 2004/2005

" This is why we have so many specialized chips nowadays

+ Really, this is just efficiency — making efficient use of the resources that
we have
= pPerformance: cycles/instruction, seconds/program
= Energy efficiency: performance/watt
= Memory: bytes/program, bytes/data structure

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Metrics

+» What do we do with metrics?
" We tend to optimize along them!

= Especially when jobs/funding depend on better performance along some metric
- See all of Intel under “Moore’s Law”

« Sometimes, strange incentives emerge
"= “Minimize the number of bugs on our dashboard”

- Does it count if we make the bugs invisible?

= “Make this faster for our demo in a week”

 Shortcuts might hurt performance at scale

= “Minimize our average memory access time”

- What if we add more memory accesses that we know will hit?

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Metrics and Success

+ Success is defined along metrics

" This affects how we measure and optimize

+» Let’s say that we choose performance/program or
performance/program set (i.e., benchmarks):
1. Measure existing performance
2. Come up with a bunch of optimizations that would improve performance
3. Select a few to build into the “next version”

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Metrics and Success

+ Success is defined along metrics

" This affects how we measure and optimize

+» Let’s say that we choose profit/year or stock price:
= Success means earning more profit than last year
" Improvement or optimizations might include:

- Reduce expenses, cut staff
- Sell more things or fancier things (e.g., in-app purchases)
- Make people pay monthly for things they could get for free

- Increase advertising revenue: Ehe New ork Times

Whistle-Blower Says Facebook ‘Chooses
Profits Over Safety’

Frances Haugen, a Facebook product manager who left the
company in May, revealed that she had provided internal
documents to journalists and others.

CSE351, Autumn 2025

10

YA UNIVERSITY of WASHINGTON

L20: Memory Allocation |

CSE351, Autumn 2025

Metrics and Success

+ Success is defined along metrics

" This affects how we measure and optimize

+ Let’s say that we choose minoritized participation in computing:

= What does success/participation mean (and dangers)?
- Women? BIPOC? All minoritized lumped together?
— Might optimize for one group at the expense of others
- Taking intro? Passing intro? Getting a degree? Getting a job?

— Says nothing about retention or participation/decision-making level

11

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Design Considerations

>

+» Regardless of what we build, the way that we define success shapes the
systems we build
" Choose your metrics carefully

" There’s more to choose from than performance
(e.g., usability, access, simplicity, agency)

4

L)

» Metrics are a “heading” (in the navigational sense)

= Best to reevaluate from time to time in case you’re off course or your destination
changes

12

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+ Let’s say your (main) metric for college is to get a 4.0 overall GPA.

" What are some potential unintended consequences of this metric?

" What are some other potential metrics you could use for college?

CSE351, Autumn 2025

13

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

House of Computing Check-In

+ Topic Group 3: Scale & Coherence /\

" Caches, Memory Allocation, Processes,
Virtual Memory

| Even more applications I
I I
I I

Applications

+» How do we maintain logical consistency in _
Programming Languages
the face of more data and more processes? & Libraries

" How do we support data access, including Operating System
dynamic requests, across multiple processes?

= How do we support control flow both within Hardware

many processes and things external to the
computer?

Transistors, Gates, Digital Systems

Physics

14

YA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Lecture Outline (2/5)

+ Cache Performance, Revisited

+» Dynamically Allocated Memory in C
+» Dynamic Memory Allocators

+» Heap Fragmentation

+» Heap Implementation Basics

CSE351, Autumn 2025

15

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Multiple Ways to Store Program Data (Review)

+ Static global data

" Fixed size (hard-coded into exem
" [ong lifetime: entirety of the program

CSE351, Autumn 2025

int élobal_array[l®24];

void foo(int n) {

+ Stack-allocated data _ int tmp;
= Local/temporary variables X—a int local_array[n];

= “Short” lifetime: deallocated on return myn = (intx)malloc(nxsizeof(int));

} 2

+ Dynamic (heap) data 7

= Size known only at runtime (i.e., based on user-input)

= Lifetime known only at runtime (long-lived data structures)

16

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Allocating Memory in C: mal Loc (Review)

+» Need to #include <stdlib.h>
+ void* malloc(size_t size)
L_____.——/
= Allocates a continuous block of s1ze bytes oﬁﬁinitialized memory, though
different allocations are not necessarily adjacent

= Returns a pointer to the beginning of the allocated block
: Typicallyo an 8-byte (x86) or 16-byte (x86-64) boundary

- Returns NULL if allocation failed (also sets errno) or size==0

+» Good practices: ptr = (int*) malloc(n*sizeof(int));
it (lptr) { ... }
" sijzeof makes code more portable; explicit cast warns of pointer mismatches
" Error check return value

17

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Allocating Memory in C: Others (Review)

«» Need to #include <stdlib.h>

+ void* malloc(size_t size)
= Allocates a continuous block of s1ze bytes of uninitialized memory, though
different allocations are not necessarily adjacent

= Returns a pointer to the beginning of the allocated block
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
- Returns NULL if allocation failed (also sets errno) or size==0

« Other allocation functions:

" void* calloc(size_t nitems, size_t size)
- “Zeros out” allocated block

" voidx realloc(void* ptr, size_t size)
- Changes the size of a previously allocated block (if possible)

18

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Deallocating Memory in C: free (Review)

«» Need to #include <stdlib.h>

. . doesnt Ckangf- the Fun“er.r
< VO d free (VO'I d* p‘?/_ (how poris to dealloged MGMWY)

= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned bym/c/realloc (i.e.,
beginning of the block), otherwise system exception raised

" Don’t call free on a block that has already been released
= No action occurs if you call free (NULL)

19

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Memory Allocation Example in C

void foo('in'g' n, 'in% m) {

1

2 int i, *p;

3@ p = (intx) malloc(nxsizeof(int)); /* allocate block of n ints */

4 if (p == NULL) {— /* check for allocation error */

5 perror("malloc")é;—Pr.'h-h Message related to errno

6 exit(0);

7 }

8 for (i=0; 1i<n; i++) /* initialize int array */

9 plil = 13
10
11|22 p = (intx) realloc(p, (ntm)*sizeof(int)); /* add space for m ints to end of p block
12 | ¥/
13 if (p == NULL) { /* check for allocation error */
14 perror("realloc"); ljgf_\gq{m(,
15 exit(0); Stuck . -
16 } > M
17 for (i=n; i < n+tm; i++) /* initialize new spaces */ P A
18 pli] = 1; 0d L
19 for (1=0; i<n+m; i++) /* print new array */ _a(_g\!lztzl"il
20 rintf ("%d\n", p[i]); N~
21 %m; /* freep %/ rEm

T

20

YA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Lecture Outline (3/5)

+ Cache Performance, Revisited

% Dynamically Allocated Memory in C
+» Dynamic Memory Allocators

+» Heap Fragmentation

+» Heap Implementation Basics

CSE351, Autumn 2025

21

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Dynamic Memory Allocators: Types (Review)

+» Programmers use dynamic memory allocators to acquire

memory at run time Userstack‘
" For data structures whose size f
(or lifetime) is known only at runtime Heap (via malloc)
" Manage the heap of a process’ memory: Uninitialized data (. bss)
Initialized data (. data)
Program text (. text)
+ Types of allocators

0
= |mplicit allocator: programmer only allocates space (no free)
- Example: garbage collection in Java, Caml, and Lisp

xplicit allocator: programmer allocates and frees space
- Example: mallocand freeinC

CSE351, Autumn 2025

22

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Dynamic Memory Allocators: Blocks (Review)

= Allocator organizes heap as a collection of variable-sized
heap blocks, which are either allocated or free

" What happens if we run out of heap space?
- Ask the Operating System for more memory and increment brk!

$ MP) User stack
7

T Top of heap
(brk ptr)

Uninitialized data (. bss)
Initialized data (. data)
Program text (. text)

23

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

=1 word = 8 bytes

Notation

+» We will draw memory divided into words
= Each word is 64 bits = 8 bytes

" Allocations will be in sizes that are a multiple of words
(i.e., multiples of 8 bytes)

" Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook @

Heap:
\ v J \ J
Allocated block Free block
(4 words) (3 words)
32 Lytes 24 bytes Free word

Allocated word

24

W UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

= 8-byte word

Allocation Example

pl = malloc(32)
p2 = malloc(40)
p3 = malloc(48)
free(p2)

P — —eee

AN d\e_Pg\Aj aN QHOCO\TQV’\/‘

placemen Pg\?cy

p4 = malloc(16)

25

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Implementation Interface (Review)

+ Applications
= Can issue arbitrary sequence of allocation and deallocation requests
" Must never access memory not currently allocated
" Must never deallocate memory not currently allocated

+ Allocators
= Can’t control number or size of allocated blocks
" Must respond immediately to allocation requests (contt reoder o buctfer)
" Must allocate blocks from free memory (hlocks canl overlap)
& Can’t move the allocated blocks (defcynestation ne slamed) wond borea your powtes
" Must align blocks so they satisfy all alignment requirements

26

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Performance Goals: Throughput

>

+» @oals: Given some sequence of allocation and deallocation

requests Ry, R4, ..., Ry, ..., R,,_1, maximize throughput and
peak memory utilization

" These goals are often conflicting

1) Throughput
= Number of completed requests per unit time
= Example:

- If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then throughput is 1,000
operations/second

CSE351, Autumn 2025

27

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Performance Goals: Memory Utilization

+ Definition: Aggregate payload P,
" malloc(p) resultsin a block with a payload of p bytes

= After request R;, has completed, the aggregate payload Pj, is the sum of currently
allocated payloads

+ Definition: Current heap size H,,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
= Defined as U;, = (ma}(x P,)/H, after k+1 requests
L<

" Goal: maximize utilization for a sequence of requests
= Why is this hard? And what happens to throughput? psck fastor gack tight?

CSE351, Autumn 2025

28

YA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Lecture Outline (4/5)

+ Cache Performance, Revisited

% Dynamically Allocated Memory in C
% Dynamic Memory Allocators

+» Heap Fragmentation

+» Heap Implementation Basics

CSE351, Autumn 2025

29

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Fragmentation (Review)

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful, but cannot satisfy
allocation requests

= Two types: internal and external

+ Recall: Fragmentation in structs

" Internal fragmentation was wasted space inside of the struct (between fields) due
to alignment

= External fragmentation was wasted space between struct instances (e.g., in an
array) due to alignment

+» Now referring to wasted space in the heap inside or between allocated
blocks

30

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Internal Fragmentation (Review)

+ For a given heap block, internal fragmentation occurs if payload
is smaller than the block

block
A
internal [— — internal
nterna nterna
fragmentation — | payload T fragmentation
/N
)\ f
+» Causes: s
" Padding for alignment purposes \ ,

" QOverhead of maintaining[heap data structures|(inside block, outside payload)
" Policy decisions (e.g., minimum block size) e, dheghpdt +o nst indidually size ewwy block

+ Easy to measure because only depends on past requests

31

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

= 8-byte word

External Fragmentation (Review)

+» For the heap, external fragmentation occurs when the
allocation/free pattern leaves “holes” between blocks

® Can cause situations where there is enough aggregate heap memory to satisfy
request, but no single free block is large enough end oF haap

pl = malloc(32) |
p2 = malloc(40)
p3 = malloc(48)

ene\ Lrssmactatis /
L iAs

p4 = malloc(48) Ohno!(What would happen now?)
56 B total free, bid nal cortiguous 7

«» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become problematic

32

YA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Polling Questions (1/2)

+» Which of the following statements are FALSE?

A. Temporary arrays should not be allocated on the Heap
showd allocate on the Stack
B. malloc returns an address of a payload that is filled with mystery

data allotes only; no intializotion

C. Peak memory utilization is a measure of both internal and external

. cegde puyl
fragmentation oo pyls
cup si2e

D. An allocation failure will cause your program to stop} Jut refurns NULL

E. We're lost...

33

YA/ UNIVERSITY of WASHINGTON

L20: Memory Allocation |

Lecture Outline (5/5)

+ Cache Performance, Revisited

% Dynamically Allocated Memory in C
% Dynamic Memory Allocators

« Heap Fragmentation

+» Heap Implementation Basics

CSE351, Autumn 2025

34

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Implementation Issues

<+ How do we know how much memory to free given just a pointer?
+ How do we keep track of the free blocks?
+» How do we pick a block to use for allocation (when many might fit)?

+» What do we do with the extra space when allocating a structure that is
smaller than the free block it is placed in?

+» How do we reinsert a freed block into the heap?

35

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or header

= Requires an extra word for every allocated block

furmeh oddress points
PO K et of poy lad

v
40

/N
block size data

(nd’ size UF pay‘M-J)

pO@ = malloc(32)

free(p0)

L> red header ¢ P-8,
’Q\‘ce Ht much SP@(@

36

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

cadress it mubtige gF §=0L1000
e.g., with 8-byte alignment,

Header |nf0rmati0n possible values for size:

1 werd 1L 00001000 = 8 bytes
L 00010000 = 16 bytes

+ For each block we need: s1ize, is-allocated? 00011000 = 24 bytes

« Standard trick /

= |f blocks are aligned, some low-order bits of s1ze are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)
" When reading s1ze, must remember to mask out this bit!

8 bytes
I - \K
Format of (_ size :@a = 1: allocated block If x is first word (header):
allocated and a=0: free block o+
free blocks: X = size | a;
payload size: block size (in bytes)
a = x & 1;
payload: application data
optional (allocated blocks only) size = x & ~1;
padding -1

37

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Polling Questions (2/2)

+» How many “flags” can we fit in our header if our allocator uses 16-byte

alignment?
all vnu»l'l'qut’-J st 16 hive lowe 4 LY 45 2emy. = 16- Ob (000D

A s)

e

+ If we placed a new “flag” in the second least significant bit, write out a C
expression that will extract this new flag from header

twv .s’fe'p,g: (D mask ot bt ©
(D shitt b LSRR O

/ N
(heaoler !L:Q-) >1 Cheager 1) & L

38

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math
"= No actual pointers, and must check each block if allocated or free

- = -y

/’ ~ ”~ ~ - \\

. O A -
a0| 32 48 16
a0 poirﬁel’
2) Explicit free list among only the free blocks, using pointers
reod \tV\\Ced \\.S‘\")

pom'ﬁ?r
40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
39

CSE351, Autumn 2025

L20: Memory Allocation |

YA UNIVERSITY of WASHINGTON

= 8-byte word

Implicit Free List Example

+ Each block begins with header (size in bytes and is-allocated? bit)
+ Heap blocks (size]|is-allocated?): 16|O 3241 64|O 323|1

— actua! header ddta

Start of heap veck block.
— N, Free word
16/0] |32|1 640 32|1 % Allocated word
g g 128 e —
0 I 32 2 “ sp S 2 Allocated word
\/ unused

16 bytes = 2-word alignment

+ 16-byte alignment for (1) heap block size and (2) payload address
= Padding for size is considered part of previous heap block (internal fragmentation)

= May require initial padding at start of heap

%{Special one-word marker (0] 1) marks end of list
= Zero size is distinguishable from all other blocks

40

YA UNIVERSITY of WASHINGTON

L20: Memory Allocation |

Summary (1/3)

+» Dynamic memory allocation is used when size or
until runtime
" Memory allocated in the heap segment of memory:
" |nC: void*x malloc(size_t size)
" InC: void free(voidx p)
" |InJava: new

+» Managed by dynamic memory allocator

CSE351, Autumn 2025

ifetime is not known

User stack

s ¥

Heap (viamalloc)

Uninitialized data (. bss)

Initialized data (. data)

Program text (. text)

= Implicit: automatic deallocations, Explicit: manual deallocations

" Performance metrics: throughput, memory utilization

brk ptr

41

YA UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2025

Summary (2/3)

+» The heap is divided into allocated and free heap blocks

" Fragmentation: internal is non-payload space within blocks, external is free space
between allocated blocks

block External fragmentation
Internal = = = - = >
fragmenn‘cee\rt?gn —> payload ?
. . 8 bytes
= Blocks have headers with size N
and is-allocated? Information: Format of size a| a=1: allocated block
allocated and a =0: free block
free blocks:
payload size: block size (in bytes)

payload: application data
optional (allocated blocks only)

padding

42

CSE351, Autumn 2025

L20: Memory Allocation |

YA UNIVERSITY of WASHINGTON

= 8-byte word
Summary (3/3)
+ Implicit free list example
+» Heap blocks (size|is-allocated?): 16]|0, 32|1, 64]|0, 32|1
Start of heap Free word
1610, 321 640 32|1 % Allocated word
Allocated word

\/ unused

16 bytes = 2-word alignment

+ 16-byte alignment for (1) heap block size and (2) payload address
= Padding for size is considered part of previous heap block (internal fragmentation)

= May require initial padding at start of heap

+ Special one-word marker (0| 1) marks end of list
= Zero s1ize is distinguishable from all other blocks

43

	Slide 1: The Hardware/Software Interface Memory Allocation I
	Slide 2: Relevant Course Information
	Slide 3: Mid-Quarter Feedback Survey Debrief
	Slide 4: Aside: Growth vs. Fixed Mindset
	Slide 5: Lecture Outline (1/5)
	Slide 6: AMAT, Revisited
	Slide 7: Metrics in Computing
	Slide 8: Metrics
	Slide 9: Metrics and Success
	Slide 10: Metrics and Success
	Slide 11: Metrics and Success
	Slide 12: Design Considerations
	Slide 13: Discussion Questions
	Slide 14: House of Computing Check-In
	Slide 15: Lecture Outline (2/5)
	Slide 16: Multiple Ways to Store Program Data (Review)
	Slide 17: Allocating Memory in C: malloc (Review)
	Slide 18: Allocating Memory in C: Others (Review)
	Slide 19: Deallocating Memory in C: free (Review)
	Slide 20: Memory Allocation Example in C
	Slide 21: Lecture Outline (3/5)
	Slide 22: Dynamic Memory Allocators: Types (Review)
	Slide 23: Dynamic Memory Allocators: Blocks (Review)
	Slide 24: Notation
	Slide 25: Allocation Example
	Slide 26: Implementation Interface (Review)
	Slide 27: Performance Goals: Throughput
	Slide 28: Performance Goals: Memory Utilization
	Slide 29: Lecture Outline (4/5)
	Slide 30: Fragmentation (Review)
	Slide 31: Internal Fragmentation (Review)
	Slide 32: External Fragmentation (Review)
	Slide 33: Polling Questions (1/2)
	Slide 34: Lecture Outline (5/5)
	Slide 35: Implementation Issues
	Slide 36: Knowing How Much to Free
	Slide 37: Header Information
	Slide 38: Polling Questions (2/2)
	Slide 39: Keeping Track of Free Blocks
	Slide 40: Implicit Free List Example
	Slide 41: Summary (1/3)
	Slide 42: Summary (2/3)
	Slide 43: Summary (3/3)

