
CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

The Hardware/Software Interface
Memory Allocation I

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

Adapted from
https://xkcd.com/1093/

https://xkcd.com/627/

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Relevant Course Information

❖ HW 18 due tonight

❖ HW 19 due Friday (11/14)

▪ Lab 4 preparation!

❖ HW 20 due Monday (11/17)

❖ Lab 4 due next Friday (11/21)

▪ Section tomorrow intended to help prepare you for Lab 4

2

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Mid-Quarter Feedback Survey Debrief

❖ Midterm was difficult

▪ We will intentionally design the final to not be as difficult

❖ More practice with exam-style questions

▪ Make sure you go to section for exam-style questions

▪ Lab synthesis questions are short-answer

▪ Look at past exams, and ask questions on Ed or OH about the solutions

❖ More answer explanations on Ed readings and homeworks

❖ Lectures are too fast

▪ Especially Amber

❖ Scheduling office hours to make it more accessible

▪ E.g. more online, weekend, weekday evening
3

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Aside: Growth vs. Fixed Mindset

❖ Students can be thought of as having either a “growth” mindset
or a “fixed” mindset (based on research by Prof. Carol Dweck)

▪ “In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and then
their goal becomes to look smart all the time and never look dumb.”

▪ “In a growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence. They don't necessarily
think everyone's the same or anyone can be Einstein, but they believe everyone
can get smarter if they work at it.”

❖ Midterm clobber policy demonstrates how we want you to adopt a
growth mindset!

4

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Lecture Outline (1/5)

❖ Cache Performance, Revisited

❖ Dynamically Allocated Memory in C

❖ Dynamic Memory Allocators

❖ Heap Fragmentation

❖ Heap Implementation Basics

5

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

AMAT, Revisited

❖ Average Memory Access Time (AMAT): average time to access memory
considering both hits and misses

 AMAT = Hit time + Miss rate × Miss penalty

 (abbreviated AMAT = HT + MR × MP)

❖ We called this a cache performance metric

▪ This isn’t the only metric we could have used!

6

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Metrics in Computing

❖ Generally, folks care most about performance

▪ Energy-efficiency is more important now since the plateau in 2004/2005

▪ This is why we have so many specialized chips nowadays

❖ Really, this is just efficiency – making efficient use of the resources that
we have

▪ Performance: cycles/instruction, seconds/program

▪ Energy efficiency: performance/watt

▪ Memory: bytes/program, bytes/data structure

7

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Metrics

❖ What do we do with metrics?

▪ We tend to optimize along them!

▪ Especially when jobs/funding depend on better performance along some metric
• See all of Intel under “Moore’s Law”

❖ Sometimes, strange incentives emerge

▪ “Minimize the number of bugs on our dashboard”
• Does it count if we make the bugs invisible?

▪ “Make this faster for our demo in a week”
• Shortcuts might hurt performance at scale

▪ “Minimize our average memory access time”
• What if we add more memory accesses that we know will hit?

8

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Metrics and Success

❖ Success is defined along metrics

▪ This affects how we measure and optimize

❖ Let’s say that we choose performance/program or
performance/program set (i.e., benchmarks):

1. Measure existing performance

2. Come up with a bunch of optimizations that would improve performance

3. Select a few to build into the “next version”

9

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Metrics and Success

❖ Success is defined along metrics

▪ This affects how we measure and optimize

❖ Let’s say that we choose profit/year or stock price:

▪ Success means earning more profit than last year

▪ Improvement or optimizations might include:
• Reduce expenses, cut staff

• Sell more things or fancier things (e.g., in-app purchases)

• Make people pay monthly for things they could get for free

• Increase advertising revenue:

10

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Metrics and Success

❖ Success is defined along metrics

▪ This affects how we measure and optimize

❖ Let’s say that we choose minoritized participation in computing:

▪ What does success/participation mean (and dangers)?
• Women? BIPOC? All minoritized lumped together?

– Might optimize for one group at the expense of others

• Taking intro? Passing intro? Getting a degree? Getting a job?

– Says nothing about retention or participation/decision-making level

11

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Design Considerations

❖ Regardless of what we build, the way that we define success shapes the
systems we build

▪ Choose your metrics carefully

▪ There’s more to choose from than performance
(e.g., usability, access, simplicity, agency)

❖ Metrics are a “heading” (in the navigational sense)

▪ Best to reevaluate from time to time in case you’re off course or your destination
changes

12

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Let’s say your (main) metric for college is to get a 4.0 overall GPA.

▪ What are some potential unintended consequences of this metric?

▪ What are some other potential metrics you could use for college?

13

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

House of Computing Check-In

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes,
Virtual Memory

❖ How do we maintain logical consistency in
the face of more data and more processes?

▪ How do we support data access, including
dynamic requests, across multiple processes?

▪ How do we support control flow both within
many processes and things external to the
computer?

14

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Lecture Outline (2/5)

❖ Cache Performance, Revisited

❖ Dynamically Allocated Memory in C

❖ Dynamic Memory Allocators

❖ Heap Fragmentation

❖ Heap Implementation Basics

15

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Multiple Ways to Store Program Data (Review)

❖ Static global data

▪ Fixed size (hard-coded into executable)

▪ Long lifetime: entirety of the program

❖ Stack-allocated data

▪ Local/temporary variables

▪ “Short” lifetime: deallocated on return

❖ Dynamic (heap) data

▪ Size known only at runtime (i.e., based on user-input)

▪ Lifetime known only at runtime (long-lived data structures)

16

int global_array[1024];

void foo(int n) {
 int tmp;
 int local_array[n];

 int* dyn = (int*)malloc(n*sizeof(int));
}

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Allocating Memory in C: malloc (Review)

❖ Need to #include <stdlib.h>

❖ void* malloc(size_t size)

▪ Allocates a continuous block of size bytes of uninitialized memory, though
different allocations are not necessarily adjacent

▪ Returns a pointer to the beginning of the allocated block
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

❖ Good practices: ptr = (int*) malloc(n*sizeof(int));
 if (!ptr) { ... }

▪ sizeof makes code more portable; explicit cast warns of pointer mismatches

▪ Error check return value

17

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Allocating Memory in C: Others (Review)

❖ Need to #include <stdlib.h>

❖ void* malloc(size_t size)

▪ Allocates a continuous block of size bytes of uninitialized memory, though
different allocations are not necessarily adjacent

▪ Returns a pointer to the beginning of the allocated block
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

❖ Other allocation functions:

▪ void* calloc(size_t nitems, size_t size)
• “Zeros out” allocated block

▪ void* realloc(void* ptr, size_t size)
• Changes the size of a previously allocated block (if possible)

18

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Deallocating Memory in C: free (Review)

❖ Need to #include <stdlib.h>

❖ void free(void* p)

▪ Releases whole block pointed to by p to the pool of available memory

▪ Pointer p must be the address originally returned by m/c/realloc (i.e.,
beginning of the block), otherwise system exception raised

▪ Don’t call free on a block that has already been released

▪ No action occurs if you call free(NULL)

19

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Memory Allocation Example in C

20

void foo(int n, int m) {
 int i, *p;
 p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
 if (p == NULL) { /* check for allocation error */
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++) /* initialize int array */
 p[i] = i;

 p = (int*) realloc(p,(n+m)*sizeof(int)); /* add space for m ints to end of p block
*/
 if (p == NULL) { /* check for allocation error */
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++) /* initialize new spaces */
 p[i] = i;
 for (i=0; i<n+m; i++) /* print new array */
 printf("%d\n", p[i]);
 free(p); /* free p */
}

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Lecture Outline (3/5)

❖ Cache Performance, Revisited

❖ Dynamically Allocated Memory in C

❖ Dynamic Memory Allocators

❖ Heap Fragmentation

❖ Heap Implementation Basics

21

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Dynamic Memory Allocators: Types (Review)

❖ Programmers use dynamic memory allocators to acquire
memory at run time

▪ For data structures whose size
(or lifetime) is known only at runtime

▪ Manage the heap of a process’ memory:

❖ Types of allocators

▪ Implicit allocator: programmer only allocates space (no free)
• Example: garbage collection in Java, Caml, and Lisp

▪ Explicit allocator: programmer allocates and frees space
• Example: malloc and free in C

22

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Dynamic Memory Allocators: Blocks (Review)

❖ Allocator organizes heap as a collection of variable-sized
heap blocks, which are either allocated or free

▪ What happens if we run out of heap space?
• Ask the Operating System for more memory and increment brk!

23

Top of heap
 (brk ptr)

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Notation

❖ We will draw memory divided into words

▪ Each word is 64 bits = 8 bytes

▪ Allocations will be in sizes that are a multiple of words
(i.e., multiples of 8 bytes)

▪ Book and old videos still use 4-byte word
• Holdover from 32-bit version of textbook

24

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Allocation Example

25

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Implementation Interface (Review)

❖ Applications

▪ Can issue arbitrary sequence of allocation and deallocation requests

▪ Must never access memory not currently allocated

▪ Must never deallocate memory not currently allocated

❖ Allocators

▪ Can’t control number or size of allocated blocks

▪ Must respond immediately to allocation requests

▪ Must allocate blocks from free memory

▪ Can’t move the allocated blocks

▪ Must align blocks so they satisfy all alignment requirements

26

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Performance Goals: Throughput

❖ Goals: Given some sequence of allocation and deallocation
requests 𝑅0, 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1, maximize throughput and
peak memory utilization

▪ These goals are often conflicting

1) Throughput

▪ Number of completed requests per unit time

▪ Example:
• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then throughput is 1,000

operations/second

27

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Performance Goals: Memory Utilization

❖ Definition: Aggregate payload 𝑃𝑘
▪ malloc(p) results in a block with a payload of p bytes

▪ After request 𝑅𝑘 has completed, the aggregate payload 𝑃𝑘 is the sum of currently
allocated payloads

❖ Definition: Current heap size 𝐻𝑘
▪ Assume 𝐻𝑘 is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

▪ Defined as 𝑈𝑘 = (max
𝑖≤𝑘

𝑃𝑖)/𝐻𝑘 after 𝑘+1 requests

▪ Goal: maximize utilization for a sequence of requests

▪ Why is this hard? And what happens to throughput?
28

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Lecture Outline (4/5)

❖ Cache Performance, Revisited

❖ Dynamically Allocated Memory in C

❖ Dynamic Memory Allocators

❖ Heap Fragmentation

❖ Heap Implementation Basics

29

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Fragmentation (Review)

❖ Poor memory utilization is caused by fragmentation

▪ Sections of memory are not used to store anything useful, but cannot satisfy
allocation requests

▪ Two types: internal and external

❖ Recall: Fragmentation in structs
▪ Internal fragmentation was wasted space inside of the struct (between fields) due

to alignment

▪ External fragmentation was wasted space between struct instances (e.g., in an
array) due to alignment

❖ Now referring to wasted space in the heap inside or between allocated
blocks

30

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Internal Fragmentation (Review)

❖ For a given heap block, internal fragmentation occurs if payload
is smaller than the block

❖ Causes:
▪ Padding for alignment purposes

▪ Overhead of maintaining heap data structures (inside block, outside payload)

▪ Policy decisions (e.g., minimum block size)

❖ Easy to measure because only depends on past requests

31

payload
Internal
fragmentation

block

Internal
fragmentation

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

External Fragmentation (Review)

❖ For the heap, external fragmentation occurs when the
allocation/free pattern leaves “holes” between blocks

▪ Can cause situations where there is enough aggregate heap memory to satisfy
request, but no single free block is large enough

❖ Don’t know what future requests will be

▪ Difficult to impossible to know if past placements will become problematic
32

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Polling Questions (1/2)

❖ Which of the following statements are FALSE?

A. Temporary arrays should not be allocated on the Heap

B. malloc returns an address of a payload that is filled with mystery
data

C. Peak memory utilization is a measure of both internal and external
fragmentation

D. An allocation failure will cause your program to stop

E. We’re lost…

33

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Lecture Outline (5/5)

❖ Cache Performance, Revisited

❖ Dynamically Allocated Memory in C

❖ Dynamic Memory Allocators

❖ Heap Fragmentation

❖ Heap Implementation Basics

34

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Implementation Issues

❖ How do we know how much memory to free given just a pointer?

❖ How do we keep track of the free blocks?

❖ How do we pick a block to use for allocation (when many might fit)?

❖ What do we do with the extra space when allocating a structure that is
smaller than the free block it is placed in?

❖ How do we reinsert a freed block into the heap?

35

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Knowing How Much to Free

❖ Standard method

▪ Keep the length of a block in the word preceding the data
• This word is often called the header field or header

▪ Requires an extra word for every allocated block

36

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Header Information

❖ For each block we need: size, is-allocated?

❖ Standard trick

▪ If blocks are aligned, some low-order bits of size are always 0

▪ Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)

▪ When reading size, must remember to mask out this bit!

37

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g., with 8-byte alignment,
possible values for size:
 00001000 = 8 bytes
 00010000 = 16 bytes
 00011000 = 24 bytes
 . . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

 size | a;

 x & 1;

 x & ~1;

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Polling Questions (2/2)

❖ How many “flags” can we fit in our header if our allocator uses 16-byte
alignment?

❖ If we placed a new “flag” in the second least significant bit, write out a C
expression that will extract this new flag from header

38

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
39

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Implicit Free List Example

❖ Each block begins with header (size in bytes and is-allocated? bit)

❖ Heap blocks (size|is-allocated?): 16|0, 32|1, 64|0, 32|1

❖ 16-byte alignment for (1) heap block size and (2) payload address

▪ Padding for size is considered part of previous heap block (internal fragmentation)

▪ May require initial padding at start of heap

❖ Special one-word marker (0|1) marks end of list

▪ Zero size is distinguishable from all other blocks
40

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

16 bytes = 2-word alignment

= 8-byte word

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Summary (1/3)

❖ Dynamic memory allocation is used when size or lifetime is not known
until runtime

▪ Memory allocated in the heap segment of memory:

▪ In C: void* malloc(size_t size)

▪ In C: void free(void* p)

▪ In Java: new

❖ Managed by dynamic memory allocator

▪ Implicit: automatic deallocations, Explicit: manual deallocations

▪ Performance metrics: throughput, memory utilization

41

brk ptr

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Summary (2/3)

❖ The heap is divided into allocated and free heap blocks

▪ Fragmentation: internal is non-payload space within blocks, external is free space
between allocated blocks

▪ Blocks have headers with size
and is-allocated? Information:

42

payload

block

Internal
fragmentation

External fragmentation

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

CSE351IntroductionL20: Memory Allocation I CSE351, Autumn 2025

Summary (3/3)

❖ Implicit free list example

❖ Heap blocks (size|is-allocated?): 16|0, 32|1, 64|0, 32|1

❖ 16-byte alignment for (1) heap block size and (2) payload address

▪ Padding for size is considered part of previous heap block (internal fragmentation)

▪ May require initial padding at start of heap

❖ Special one-word marker (0|1) marks end of list

▪ Zero size is distinguishable from all other blocks
43

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

16 bytes = 2-word alignment

= 8-byte word

	Slide 1: The Hardware/Software Interface Memory Allocation I
	Slide 2: Relevant Course Information
	Slide 3: Mid-Quarter Feedback Survey Debrief
	Slide 4: Aside: Growth vs. Fixed Mindset
	Slide 5: Lecture Outline (1/5)
	Slide 6: AMAT, Revisited
	Slide 7: Metrics in Computing
	Slide 8: Metrics
	Slide 9: Metrics and Success
	Slide 10: Metrics and Success
	Slide 11: Metrics and Success
	Slide 12: Design Considerations
	Slide 13: Discussion Questions
	Slide 14: House of Computing Check-In
	Slide 15: Lecture Outline (2/5)
	Slide 16: Multiple Ways to Store Program Data (Review)
	Slide 17: Allocating Memory in C: malloc (Review)
	Slide 18: Allocating Memory in C: Others (Review)
	Slide 19: Deallocating Memory in C: free (Review)
	Slide 20: Memory Allocation Example in C
	Slide 21: Lecture Outline (3/5)
	Slide 22: Dynamic Memory Allocators: Types (Review)
	Slide 23: Dynamic Memory Allocators: Blocks (Review)
	Slide 24: Notation
	Slide 25: Allocation Example
	Slide 26: Implementation Interface (Review)
	Slide 27: Performance Goals: Throughput
	Slide 28: Performance Goals: Memory Utilization
	Slide 29: Lecture Outline (4/5)
	Slide 30: Fragmentation (Review)
	Slide 31: Internal Fragmentation (Review)
	Slide 32: External Fragmentation (Review)
	Slide 33: Polling Questions (1/2)
	Slide 34: Lecture Outline (5/5)
	Slide 35: Implementation Issues
	Slide 36: Knowing How Much to Free
	Slide 37: Header Information
	Slide 38: Polling Questions (2/2)
	Slide 39: Keeping Track of Free Blocks
	Slide 40: Implicit Free List Example
	Slide 41: Summary (1/3)
	Slide 42: Summary (2/3)
	Slide 43: Summary (3/3)

