
CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

The Hardware/Software Interface
Memory & Caches IV

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

http://xkcd.com/1854/

http://xkcd.com/1854/

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Relevant Course Information

❖ Lab 4 released today, due Friday, 11/21

▪ Cache parameter puzzles and code optimizations

❖ HW17 due Fri (11/7)

❖ HW19 due Fri (11/14)

▪ Lab 4 preparation

❖ Midterm scores have been released

▪ Look at the posted solutions, common issues post, and the rubric in Gradescope

▪ Submit a regrade request if you see a discrepancy
• Be kind! We are human and grading hundreds of exams. Rudeness is unacceptable.

2

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (1/5)

❖ Cache Misses

❖ Data Consistency and Cache Writes

❖ Cache-Friendly Code

❖ Cache Blocking

❖ Cache Motivation, Revisited

3

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Types of Cache Misses: 3 C’s (Review)

❖ Compulsory (cold) miss
▪ Occurs on first access to a block

❖ Conflict miss
▪ Conflict misses occur when the cache is large enough, but multiple blocks all map to the same set

• e.g., referencing addresses 8, 24, 8, 24, … (blocks 2 & 6) could miss every time

❖ Capacity miss
▪ Occurs when the set of active cache blocks (the working set) is larger than the cache

(i.e., won’t fit even if cache was fully-associative)

▪ Note: Fully-associative only has Compulsory and Capacity misses

4

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Parameters and Misses (Review)

❖ To help with compulsory misses, increase the block size

▪ More data is brought into the cache with each miss

❖ To help with conflict misses, increase the associativity

▪ More blocks can coexist in the same set

❖ To help with capacity misses, increase the cache size or decrease the
working set of data

▪ Can simultaneously hold more in the cache relative to accessed data

5

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (2/5)

❖ Cache Misses

❖ Data Consistency and Cache Writes

❖ Cache-Friendly Code

❖ Cache Blocking

❖ Cache Motivation, Revisited

6

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Data Consistency

❖ Multiple copies of data may exist – levels of $ and main memory

▪ Writes may break consistency across the multiple copies

▪ Blocks are copied to, updated, and evicted from caches

7

7 9 14 3Cache

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Memory

Data is copied in block-sized
transfer units

regs

L1 cache

main memory

local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)

L2 cache

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Write Policies (Review)

❖ What to do on a write-hit?
▪ Write-through: write immediately to next level

▪ Write-back: defer write to next level until line is evicted (replaced)

• Must track which cache lines have been modified (“dirty bit”)

❖ What to do on a write-miss?
▪ Write allocate: (“fetch on write”) load into cache, then execute the write-hit policy

• Good if more writes or reads to the location follow

▪ No-write allocate: (“write around”) just write immediately to next level

❖ Typical caches:
▪ Write-back + Write allocate, usually

▪ Write-through + No-write allocate, occasionally

8

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Setup

9

Note: We are making some unrealistic simplifications to keep this
example simple and focus on the cache policies

0xBEEFCache: G01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

There is only one set in this tiny cache,
so the tag is the entire block number!

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #1 Step 1

10

0xBEEFCache: G01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into
cache

Write Miss

Not valid x86, assume we mean an address
associated with this block num

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #1 Step 2

11

0xCAFECache: F01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into
cache

Step 2: Write
0xFACE to cache
only and set the
dirty bit

Write Miss

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #1 Result

12

0xFACECache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into
cache

Step 2: Write
0xFACE to cache
only and set the
dirty bit

Write Miss

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #2 Step 1

13

0xFACECache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step: Write
0xFEED to cache
only (and set the
dirty bit)

2) mov $0xFEED, (F)
Write Miss Write Hit

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #2 Result

14

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F) 2) mov $0xFEED, (F)
Write Miss Write Hit

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #3 Step 1

15

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F) 2) mov $0xFEED, (F) 3) mov (G), %ax
Write Miss Write Hit Read Miss

Step 1: Write F back
to memory since it
is dirty

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #3 Step 2

16

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xFEED

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F) 2) mov $0xFEED, (F) 3) mov (G), %ax
Write Miss Write Hit Read Miss

Step 1: Write F back
to memory since it
is dirty

Step 2: Bring G into
the cache so that
we can copy it into
%ax

0 G 0xBEEF

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Polling Question

❖ Which of the following cache statements are FALSE? (Select all)

A. We can reduce compulsory misses by decreasing our block size

B. We can reduce conflict misses by increasing associativity

C. A write-back cache will save time for code with good temporal
locality on writes

D. A write-through cache will always match data with the memory
hierarchy level below it

E. We’re lost…

17

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (3/5)

❖ Cache Misses

❖ Data Consistency and Cache Writes

❖ Cache-Friendly Code

❖ Cache Blocking

❖ Cache Motivation, Revisited

18

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Optimizations for the Memory Hierarchy

❖ Write code that has locality!

▪ Spatial: access data contiguously

▪ Temporal: make sure access to the same data is not too far apart in time

❖ How can you achieve locality?

▪ Proper choice of algorithm

▪ Loop transformations

▪ Adjust memory accesses in code (software) to improve miss rate (MR)
• Requires knowledge of both how caches work as well as your system’s parameters

19

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache-Friendly Code

❖ Programmer can optimize for cache performance
▪ How data structures are organized

▪ How data are accessed
• Nested loop structure

• Blocking is a general technique

❖ All systems favor “cache-friendly code”
▪ Getting absolute optimum performance is very platform specific

• Cache size, cache block size, associativity, etc.

▪ Can get most of the advantage with generic coding rules
• Keep working set reasonably small (temporal locality)

• Use small strides (spatial locality)

• Focus on inner loop code

20

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

The Memory Mountain

21

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
ea

d
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (4/5)

❖ Cache Misses

❖ Data Consistency and Cache Writes

❖ Cache-Friendly Code

❖ Cache Blocking

❖ Cache Motivation, Revisited

22

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Example: Matrix Multiplication

23

C

= ×

A B

ai* b*j

cij

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Matrices in Memory

❖ How do cache blocks fit into this scheme?

▪ Row major matrix in memory:

24

Cache
blocks

COLUMN of matrix (blue) is spread
among cache blocks shown in red

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Naïve Matrix Multiply

// move along rows of A
for (i = 0; i < n; i++)
 // move along columns of B
 for (j = 0; j < n; j++)
 // EACH k loop reads row of A, col of B
 // Also read & write C(i,j) n times
 for (k = 0; k < n; k++)
 C[i][j] += A[i][k] * B[k][j];

25

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:

▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size is much smaller than 𝑛

❖ First iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
 misses

26

×=

Ignoring
matrix C

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:

▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size is much smaller than 𝑛

❖ First iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
 misses

▪ Afterwards in cache:
(schematic)

27

×=

×=

8 doubles wide

Ignoring
matrix C

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:

▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size is much smaller than 𝑛

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
 misses

❖ Total misses:
9𝑛

8
× 𝑛2 =

9

8
𝑛3

28

×=

once per product matrix element

Ignoring
matrix C

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Linear Algebra to the Rescue (1)

❖ Can get the same result of a matrix multiplication by splitting the
matrices into smaller submatrices (matrix “blocks”)

❖ For example, multiplying two 4×4 matrices:

29

This is extra
(non-testable)

material

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Linear Algebra to the Rescue (2)

❖ Matrices of size 𝑛 × 𝑛, split into 4 blocks of size 𝑟 (𝑛 = 4𝑟)

❖ Multiplication operates on small “block” matrices

▪ C22 = A21B12 + A22B22 + A23B32 + A24B42 = k A2k × Bk2

▪ Choose size so that they fit in the cache!

▪ This technique called “cache blocking”

30

This is extra
(non-testable)

material

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Blocked Matrix Multiply

❖ Blocked version of the naïve algorithm:

▪ 𝑟 = block matrix size (assume 𝑟 divides 𝑛 evenly)

31

// move by rxr BLOCKS now
for (i = 0; i < n; i += r)
 for (j = 0; j < n; j += r)
 for (k = 0; k < n; k += r)
 // block matrix multiplication

 for (ib = i; ib < i+r; ib++)

 for (jb = j; jb < j+r; jb++)

 for (kb = k; kb < k+r; kb++)

 C[ib][jb] += A[ib][kb] * B[kb][jb];

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

𝑟2 elements per block, 8 per cache block

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size is much smaller than 𝑛

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < cache size

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 𝑛/𝑟 × 𝑟2/8 × 2 = 𝑛𝑟/4

32

𝑛/𝑟 blocks

𝑛/𝑟 blocks in row and column

×=

Ignoring
matrix C

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

𝑟2 elements per block, 8 per cache block

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size is much smaller than 𝑛

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < cache size

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 𝑛/𝑟 × 𝑟2/8 × 2 = 𝑛𝑟/4

▪ Afterwards in cache
(schematic)

33

×=

×=

Ignoring
matrix C

𝑛/𝑟 blocks in row and column

𝑛/𝑟 blocks

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

𝑟2 elements per block, 8 per cache block

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size is much smaller than 𝑛

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < cache size

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 𝑛/𝑟 × 𝑟2/8 × 2 = 𝑛𝑟/4

❖ Total misses:

▪ 𝑛𝑟/4 × 𝑛/𝑟 2 = 𝑛3/(4𝑟)
34

×=

Ignoring
matrix C

𝑛/𝑟 blocks in row and column

𝑛/𝑟 blocks

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Matrix Multiply Visualization

❖ Here 𝑛 = 100, 𝐶 = 32 KiB, 𝑟 = 30

35

Naïve:

Blocked:

≈ 1,020,000
cache misses

≈ 90,000
cache misses

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (5/5)

❖ Cache Misses

❖ Data Consistency and Cache Writes

❖ Cache-Friendly Code

❖ Cache Blocking

❖ Cache Motivation, Revisited

36

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Motivation, Revisited

❖ Memory accesses are expensive!

▪ Massive speedups to processors without similar speedups in memory only made
the problem worse

▪ “Processor-Memory Bottleneck”:

❖ We defined “locality”, based on observations about existing programs,
written by an extremely small subset of the population

▪ We built hardware that utilizes locality to improve performance (e.g., AMAT)

37

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache “Conclusions”

❖ All systems favor “cache-friendly code”

▪ Can get most of the advantage with generic coding rules

❖ We implicitly made value judgments about “good” and “bad” code

▪ “Good” code exhibits “good” locality

▪ “Good” code might be considered the (desired) common case

38

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Common Case Optimizations

❖ Optimizing for the common case is a classic (arguably foundational) CS
technique!

▪ e.g., algorithms analysis often uses worse case or average case performance

▪ e.g., caches optimize for an average program (“most programs”) that exhibits
locality

❖ Natural conclusion is to make the common case as performant as
possible at the expense of edge-cases

▪ Generally, bigger performance impact with common case than edge case
optimizations

▪ What’s the danger here?

39

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

The Common Case and Normativity

❖ “Normativity is the phenomenon in human societies of designating some
actions or outcomes as good or desirable or permissible and others as
bad or undesirable or impermissible.”

▪ https://en.wikipedia.org/wiki/Normativity

❖ Norms are what are considered “usual” or “expected”

▪ These often get conflated with the common case:
norm gets “common case” treatment, abnormal gets “edge case” treatment

▪ Who determines the norms?

40

https://en.wikipedia.org/wiki/Normativity
https://en.wikipedia.org/wiki/Normativity

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Example: TSA Body Scanners

❖ TSA used machine learning to determine
predictable variation among “average” bodies

▪ Built two models: one for “men” and one for “women”

❖ TSA agent chooses model to use based on assumptions about traveler’s
presentation:

❖ Who are the “edge cases?”

❖ What is the “edge case performance?”

41

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Design Considerations

❖ Make sure you account for non-normative cases

▪ Is this (change to) edge-case behavior okay/acceptable?

❖ Be careful of implicit normative assumptions

▪ Can erase people’s experiences and diversity, even labeling/categorizing them as
threats

▪ Caches aren’t neutral, either – they assume that the underlying data doesn’t
change
• Changes can come from above (the CPU), but not from below

• e.g., changing your name in Google Drive “breaks” the browser cache

42

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Where else do you see normative assumptions made in tech or CS?
What are the consequences of the “edge case” behaviors in these
situations?

43

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Summary (1/3)

❖ The 3 C’s of cache misses: compulsory, conflict, and capacity

▪ There are both parameter and code changes that can help with each kind

❖ Write-hit policies:

▪ Write back + write allocate
• Each line of cache has a dirty bit

▪ Write through + no write allocate

44

Cache

Memory

D

1. Change data (and set dirty bit)

Cache

Memory

1. Change data

2. Change data

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Summary (2/3)

❖ The 3 C’s of cache misses: compulsory, conflict, and capacity

▪ There are both parameter and code changes that can help with each kind

❖ Write-miss policies:

▪ Write back + write allocate
• Each line of cache has a dirty bit

▪ Write through + no write allocate

45

Cache

Memory

D

1. Fetch block 2. Write back (if evicted block is dirty)

3. Change data (and set dirty bit)

Cache

Memory

1. Change data

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Summary (3/3)

❖ Cache blocking is a cache optimization technique that reorders memory
accesses to maximize the use of cache blocks while they are in the cache

▪ Use data in cache block as much as possible before evicting that block

▪ Subdivide larger problem (e.g., matrix multiplication) into smaller ones where
working set can fit in the cache

❖ Cache-friendly code:

▪ Work with a reasonably small amount of data at any given time

▪ Use small strides whenever possible in terms of loop and index ordering

▪ Focus your time and energy on optimizing the inner loop code
46

×= ×=vs.

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

47

Bonus Slides!

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Examples: Compulsory, Conflict

❖ Code analysis from last lecture:

▪ ar[0][0] and ar[1][0] are compulsory misses
• Never accessed those blocks before

▪ ar[0][1] is a conflict miss
• Its block got kicked out earlier by access to ar[4][0]

• Two other sets were unused

48

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++)
 for (int j = 0; j < SIZE; j++)
 sum += ar[j][i];

Cache: 00

01

10

11

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Examples: Capacity

❖ Assume array ar_cap is twice as big as cache:

▪ All misses in the second loop are capacity misses
• First loop accesses consecutive blocks, so cache is guaranteed to fill up

• First half of first loop fills cache, second half of first loop completely replaces the first half in
cache

• Second loop revisits block from array that are no longer in the cache

49

for (int i = 0; i < SIZE; i++)
 sum = ar_cap[i];
for (int i = 0; i < SIZE; i++)
 ar_cap[i] = 0;

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Homework Setup (1/2)

❖ Homework 19 explores the idea of a cache image – a view of memory
chunking by cache size instead of block size

▪ Each cache image maps entirely onto (i.e., exactly fills) the cache

▪ Each cache image has a unique tag (instead of block number)

50

Addresses Block Data

00 00 XX

00 01 XX

00 10 XX

00 11 XX

01 00 XX

01 01 XX

01 10 XX

01 11 XX

10 00 XX

10 01 XX

10 10 XX

10 11 XX

Memory

Cache

Set Tag Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

cache
image 0

cache
image 1

cache
image 2

CSE351IntroductionL19: Memory & Caches IV CSE351, Autumn 2025

Homework Setup (2/2)

❖ Assume our code currently does: R 0x00, W 0x20, R 0x01, W 0x21

▪ What is the current miss rate?

▪ How could we rearrange these accesses to improve our miss rate?

51

Addresses Block Data

00 00 XX

00 01 XX

00 10 XX

00 11 XX

01 00 XX

01 01 XX

01 10 XX

01 11 XX

10 00 XX

10 01 XX

10 10 XX

10 11 XX

Memory

Cache

Set Tag Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

cache
image 0

cache
image 1

cache
image 2

	Slide 1: The Hardware/Software Interface Memory & Caches IV
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline (1/5)
	Slide 4: Types of Cache Misses: 3 C’s (Review)
	Slide 5: Parameters and Misses (Review)
	Slide 6: Lecture Outline (2/5)
	Slide 7: Data Consistency
	Slide 8: Cache Write Policies (Review)
	Slide 9: Write-back, Write Allocate Example Setup
	Slide 10: Write-back, Write Allocate Example Access #1 Step 1
	Slide 11: Write-back, Write Allocate Example Access #1 Step 2
	Slide 12: Write-back, Write Allocate Example Access #1 Result
	Slide 13: Write-back, Write Allocate Example Access #2 Step 1
	Slide 14: Write-back, Write Allocate Example Access #2 Result
	Slide 15: Write-back, Write Allocate Example Access #3 Step 1
	Slide 16: Write-back, Write Allocate Example Access #3 Step 2
	Slide 17: Polling Question
	Slide 18: Lecture Outline (3/5)
	Slide 19: Optimizations for the Memory Hierarchy
	Slide 20: Cache-Friendly Code
	Slide 21: The Memory Mountain
	Slide 22: Lecture Outline (4/5)
	Slide 23: Example: Matrix Multiplication
	Slide 24: Matrices in Memory
	Slide 25: Naïve Matrix Multiply
	Slide 26: Cache Miss Analysis (Naïve)
	Slide 27: Cache Miss Analysis (Naïve)
	Slide 28: Cache Miss Analysis (Naïve)
	Slide 29: Linear Algebra to the Rescue (1)
	Slide 30: Linear Algebra to the Rescue (2)
	Slide 31: Blocked Matrix Multiply
	Slide 32: Cache Miss Analysis (Blocked)
	Slide 33: Cache Miss Analysis (Blocked)
	Slide 34: Cache Miss Analysis (Blocked)
	Slide 35: Matrix Multiply Visualization
	Slide 36: Lecture Outline (5/5)
	Slide 37: Cache Motivation, Revisited
	Slide 38: Cache “Conclusions”
	Slide 39: Common Case Optimizations
	Slide 40: The Common Case and Normativity
	Slide 41: Example: TSA Body Scanners
	Slide 42: Design Considerations
	Slide 43: Discussion Questions
	Slide 44: Summary (1/3)
	Slide 45: Summary (2/3)
	Slide 46: Summary (3/3)
	Slide 47: Bonus Slides!
	Slide 48: Cache Miss Examples: Compulsory, Conflict
	Slide 49: Cache Miss Examples: Capacity
	Slide 50: Homework Setup (1/2)
	Slide 51: Homework Setup (2/2)

