YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

The Hardware/Software Interface
Memory & Caches IV

Instructors:

Amber Hu, Justin Hsia REFRESH TYPE EXAMPLE SHORTCUTS EFFECT
SOFT REFRESH ~~ GMAIL [REFRESH] BUTTON | REQUESTS UPDATE. WITHIN JAVASCRIPT

Teaching Assistants:

_ NORMAL REFRESH = F5,CTRLR, 38R REFRESHES PAGE
Anthony Mangus Divya Ramu

HARD REFRESH CTRL-FS, (R4}, $860R REFRESHES PAGE INCLUDING CACHED FILES

Grace Zhou Jessie Sun

. . . HARDER REFRESH CTRL-{-HYPER-ESC-R-F5 REMOTELY (YCLES POLER To DATACENTER
Jiuyang Lyu Kanishka Singh CTRL 9832 0#-RF5-F-5-

, , HARDEST REFRESH | o (50 a-crioce | INTERNET STARTS OVER FROM ARPANET

Kurt Gu Liander Rainbolt

Mendel Carroll Ming Yan http://xked.com/1854/

Naama Amiel Pollux Chen

Rose Maresh Soham Bhosale

Violet Monserate

http://xkcd.com/1854/

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV

Relevant Course Information

+ Lab 4 released today, due Friday, 11/21

" Cache parameter puzzles and code optimizations

2« HW17 due Fri (11/7)
2+ HW19 due Fri (11/14)
" |lab 4 preparation

« Midterm scores have been released

" Look at both the posted solutions and the rubric in Gradescope
= Submit a regrade request if you see a discrepancy

- Be kind! We are human and grading hundreds of exams. Rudeness is unacceptable.

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV

Lecture Outline (1/5)

+» Cache Misses

+» Data Consistency and Cache Writes
+ Cache-Friendly Code

+ Cache Blocking

+ Cache Motivation, Revisited

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Types of Cache Misses: 3 C’s (Review)

« Compulsory (cold) miss
= Qccurs on first access to a block

«» Conflict miss

= Conflict misses occur when the cache is large enough, but multiple blocks all map to the same set
- e.g., referencing addresses 8, 24, 8, 24, ... (blocks 2 & 6) could miss every time

+» Capacity miss
= QOccurs when the set of active cache blocks (the working set) is larger than the cache
(i.e., won’t fit even if cache was fully-associative)

= Note: Fully-associative only has Compulsory and Capacity misses

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Parameters and Misses (Review)

+» To help with compulsory misses, increase the block size

" More data is brought into the cache with each miss

+ To help with conflict misses, increase the associativity
" More blocks can coexist in the same set

+» To help with capacity misses, increase the cache size or decrease the
working set of data

= Can simultaneously hold more in the cache relative to accessed data

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (2/5)

% Cache Misses

+» Data Consistency and Cache Writes
+ Cache-Friendly Code

+ Cache Blocking

+ Cache Motivation, Revisited

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Data Consistency

+» Multiple copies of data may exist — levels of S and main memory
= Writes may break consistency across the multiple copies
= Blocks are copied to, updated, and evicted from caches

Cache 7 9 14 3 A

L1 cache

Data is copied in block-sized

transfer units
L2 cache

Memory 0 1 2 3 / main memory \
4 2 6 / local secondary storage
8 9 10 11 (local disks)

12 13 14 15 remote secondary storage
0e000000O0COCGCOOOEOEO (distributed file systems, web servers)

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Write Policies (Review)

«+ What to do on a write-hit?

= Write-through: write immediately to next level

= Write-back: defer write to next level until line is evicted (replaced)
- Must track which cache lines have been modified (“dirty bit”)

«» What to do on a write-miss?

= Write allocate: (“fetch on write”) load into cache, then execute the write-hit policy
« Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

+ Typical caches:
= Write-back + Write allocate, usually
= Write-through + No-write allocate, occasionally

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV

CSE351, Autumn 2025

Write-back, Write Allocate Example Setup

Note: We are making some unrealistic simplifications to keep this
example simple and focus on the cache policies

Valid Dirty Tag Block Contents
Cache: 11 |0 G OxBEEF
4

There is only one set in this tiny cache,
so the tag is the entire block number!

Block X
Memory: Num .
F OxCAFE

G OXBEEF

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #1 Step 1

Not valid x86, assume we mean an address

1) mov $OX FACE , (F) / associated with this block num

Write Miss
Valid Dirty Tag Block Contents
Cache: 1|10 G OXBEEF
Step 1: Bring F into
cache
Block X
Memory: Num :
F OxCAFE
G OXBEEF

10

W UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #1 Step 2

1) mov S$OxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents

Cache: 1] 1|0 F OxCAFE
Step 1: Bring F into
cache

Block Step 2: Write
Memory: Num OxFACE to cache
F OxCAFE only and set the
- dirty bit

G OXBEEF

11

W UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #1 Result

1) mov $OxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents

Cache: 1]]1 F OxFACE
Step 1: Bring F into
cache

Block Step 2: Write
Memory: Num OxFACE to cache
F OxCAFE only and set the
- dirty bit

G OXBEEF

12

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #2 Step 1

1) mov $OxFACE, (F) 2)mov S$SOXFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents

Cache: 1]]1 F OxFACE
Step: Write
OxFEED to cache
only (and set the

Block . dirty bit)
Memory: Num :
F OxCAFE

G OXBEEF

13

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #2 Result

1) mov $OxFACE, (F) 2)mov S$SOXFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1]]1 F OXFEED
Block X
Memory: Num :
F OxCAFE

G OXBEEF

14

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Write-back, Write Allocate Example Access #3 Step 1

1) mov $OxFACE, (F) 2)mov S$SOXFEED, (F) 3) mov (G), %ax

Write Miss Write Hit Read Miss
Valid Dirty Tag Block Contents
Cache: 1]]1 F OXFEED

Step 1: Write F back
to memory since it

is dirty
Block X
Memory: Num :
F OxCAFE

G OXBEEF

15

YA UNIVERSITY of WASHINGTON

L19: Memory & Caches IV

CSE351, Autumn 2025

Write-back, Write Allocate Example Access #3 Step 2

1) mov $OxFACE, (F) 2)mov S$SOXFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1|10 G OXBEEF
Block X
Memory: Num :
F OXFEED
G

OXBEEF

3) mov (G), %ax

Read Miss

Step 1: Write F back
to memory since it
is dirty

Step 2: Bring G into
the cache so that
we can copy it into
%6ax

16

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Polling Question

+» Which of the following cache statements is FALSE?

A.
B.

We can reduce compulsory misses by decreasing our block size
We can reduce conflict misses by increasing associativity

A write-back cache will save time for code with good temporal
locality on writes

. A write-through cache will always match data with the memory

hierarchy level below it

We’re lost...

17

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (3/5)

% Cache Misses

% Data Consistency and Cache Writes
% Cache-Friendly Code

+ Cache Blocking

+ Cache Motivation, Revisited

18

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV

Optimizations for the Memory Hierarchy

+» Write code that has locality!
= Spatial: access data contiguously
" Temporal: make sure access to the same data is not too far apart in time

+» How can you achieve locality?
" Proper choice of algorithm
= Loop transformations
= Adjust memory accesses in code (software) to improve miss rate (MR)

- Requires knowledge of both how caches work as well as your system’s parameters

CSE351, Autumn 2025

19

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”
= Getting absolute optimum performance is very platform specific
- Cache size, cache block size, associativity, etc.

= Can get most of the advantage with generic coding rules
- Keep working set reasonably small (temporal locality)
- Use small strides (spatial locality)
« Focus on inner loop code

20

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV

CSE351, Autumn 2025

- Core i7 Haswell
The Memory Mountain 31 GHz

32 KB L1 d-cache
256 KB L2 cache

165000 8 MB L3 cache
64 B block size

— 14000 ;

™)

< 12000

:

€ 10000 ‘

3

§ 8000 ‘ Ridges

3 5000 . ? of temporal

/A locality
4000
2000 ’
Slopes /}
of spatial <8 32k
localit 128k
y B 512k
2m
s7
Stride (x8 bytes) s9 3om Size (bytes)

128m

21

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (4/5)

% Cache Misses

% Data Consistency and Cache Writes
% Cache-Friendly Code

+ Cache Blocking

+ Cache Motivation, Revisited

22

YA/ UNIVERSITY of WASHINGTON

L19: Memory & Caches IV

Example: Matrix Multiplication

A
EEEEEEEE

U
*

[S

CSE351, Autumn 2025

23

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Matrices in Memory

«» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

24

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Naive Matrix Multiply

// move along rows of A
for (1 = 0; 1 < nj; 1++)
// move along columns of B
for (j = 0; J < nj j++)
// EACH k loop reads row of A, col of B
// Also read & write C(i,j) n times
for (k = 0; k < nj; k++)
CLil[J] += A[1][k] * B[k][]];

C(i,j) C(i,j) Ali,:)
O O | o | Wl B(.,j)

25

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Naive) ['g”"””gJ

matrix C

<« Scenario Parameters:

= Square matrix (n X n), elements are doub les
" Cache block size K =64 B =8 doubles
= Cache size is much smaller than n

< First iteration:

1
X

n on .
" — 4+ 1n =—misses
8 8

26

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Naive) ['g”"””gJ

matrix C

<« Scenario Parameters:

= Square matrix (n X n), elements are doub les
" Cache block size K =64 B =8 doubles
= Cache size is much smaller than n

« First iteration:
on — X
= E+n =—nm|sses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
27

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

matrix C

Cache Miss Analysis (Naive) ['g”"””gJ

<« Scenario Parameters:

= Square matrix (n X n), elements are doub les
" Cache block size K =64 B =8 doubles
= Cache size is much smaller than n

« Each iteration:

n on .
" — 4+ 1n =—misses
8 8

1
X

. 9N
« Total misses: - X N2 n3

| ©

A

once per product matrix element
28

W UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025
. This is extra
Linear Algebra to the Rescue (1) (non-ttest.atlale>
materia

+ Can get the same result of a matrix multiplication by splitting the
matrices into smaller submatrices (matrix “blocks”)

+» For example, multiplying two 4x4 matrices:

a1

Q12 Q13 Q47
Ay Qpz Qpq| _ [A1q A1z] - . .
Ay A3z Gza| = |4, A,,| with B defined similarly.
Agp Qg3 Aygl
AB = [(A11B11 +A1,B51) (A11B1> + A1,B55)
(A21B11 + AyzBy1) (Az1Bip + ApyBy5)

29

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

material

+ Matrices of size n x n, split into 4 blocks of size r (n = 4r)

« Multiplication operates on small “block” matrices
" Cp = ApBiy + ApBy + ApBay +AyB,, =2 Ay X By,
" Choose size so that they fit in the cache!
" This technique called “cache blocking”

30

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

// move by rxr BLOCKS now
for (1 = 0; 1 < nj; i +=r)
for (J = 0; J <nj; j +=r)
for (k = 0; k < n; k += r)
// block matrix multiplication
for (ib = 13 ib < d+r; 1ib++)
for (jb = j; jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)
Clib][jb] += A[ib][kb] * B[kb][jb];

" r = block matrix size (assume r divides n evenly)

31

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Blocked) ['g”"””gJ

matrix C

+ Scenario Parameters:
= Cache block size K =64 B = 8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 372 < cache size

/rz elements per block, 8 per cache block fn/rjblocks\
R Each/b’lock iteration: O HEEEEN —
= r2 /8 misses per block — X .
" n/rXr¢/8x2=nr/4 —

n/r blocks in row and column

32

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Blocked) ['g”"””gJ

matrix C

+ Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 372 < cache size

/rz elements per block, 8 per cache block fn/rjblocks\
R Each/b’lock iteration: O HEEEEN —
= r2 /8 misses per block — X .
" n/rXr¢/8x2=nr/4 —

n/r blocks in row and column

= Afterwards in cache [HEEEN
(schematic)

1
X

33

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Analysis (Blocked) ['g”"””gJ

matrix C

+ Scenario Parameters:
= Cache block size K =64 B = 8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 372 < cache size

/rz elements per block, 8 per cache block fn/rjblocks\
R Each/b’lock iteration: O HEEEEN —
= r2 /8 misses per block — X .
" n/rXr¢/8x2=nr/4 —

n/r blocks in row and column

« Total misses:
= nr/4 x (n/r)? = n3/(4r)

34

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Matrix Multiply Visualization

+ Heren =100, C =32 KiB, r =30
Naive:

B

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

35

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Lecture Outline (5/5)

% Cache Misses

% Data Consistency and Cache Writes
% Cache-Friendly Code

% Cache Blocking

+ Cache Motivation, Revisited

36

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Motivation, Revisited

+» Memory accesses are expensive!

" Massive speedups to processors without similar speedups in memory only made
the problem worse

= “Processor-Memory Bottleneck”:

an
8
b
O

+» We defined “locality”, based on observations about existing programs,
written by an extremely small subset of the population

= We built hardware that utilizes locality to improve performance (e.g., AMAT)

37

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache “Conclusions”

+ All systems favor “cache-friendly code”

" Can get most of the advantage with generic coding rules

» /\ We implicitly made value judgments about “good” and “bad” code
" “Good” code exhibits “good” locality
" “Good” code might be considered the (desired) common case

38

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Common Case Optimizations

+ Optimizing for the common case is a classic (arguably foundational) CS
technique!
" e.g., algorithms analysis often uses worse case or average case performance

= e.g., caches optimize for an average program (“most programs”) that exhibits
locality

4

« Natural conclusion is to make the common case as performant as
possible at the expense of edge-cases

= Generally, bigger performance impact with common case than edge case
optimizations

" What’s the danger here?

39

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV

CSE351, Autumn 2025

The Common Case and Normativity

+» “Normativity is the phenomenon in human societies of designating some

actions or outcomes as good or desirable or permissible and others as
bad or undesirable or impermissible.”

" https://en.wikipedia.org/wiki/Normativity

+» Norms are what are considered “usual” or “expected”

"= These often get conflated with the common case:
norm gets “common case” treatment, abnormal gets “edge case” treatment
= Who determines the norms?

40

https://en.wikipedia.org/wiki/Normativity
https://en.wikipedia.org/wiki/Normativity

YA/ UNIVERSITY of WASHINGTON

Example: TSA Body Scanners

o

L)

L19: Memory & Caches IV CSE351, Autumn 2025

TSA used machine learning to determine

predictable variation among “average” bodies

=" Built two models: one for “men” and one for “women”

o

L)

presentation:

%

+» Who are the “edge cases?”

L)

%

» TSA agent chooses model to use based on assumptions about traveler’s

What is the “edge case performance?”

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Design Considerations

+» Make sure you account for non-normative cases

" |s this (change to) edge-case behavior okay/acceptable?

+ Be careful of implicit normative assumptions

= Can erase people’s experiences and diversity, even labeling/categorizing them as
threats

= Caches aren’t neutral, either — they assume that the underlying data doesn’t
change

- Changes can come from above (the CPU), but not from below
- e.g., changing your name in Google Drive “breaks” the browser cache

42

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students
= | will call on a few groups afterwards so please be prepared to share out

= Be respectful of others’ opinions and experiences

+» Where else do you see normative assumptions made in tech or CS?
What are the consequences of the “edge case” behaviors in these

situations?

43

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Summary (1/3)

+» The 3 C’s of cache misses: compulsory, conflict, and capacity

" There are both parameter and code changes that can help with each kind

+ Write-hit policies:
. . 1. Change data (and set dirty bit
= Write back + write allocate . . (and set dirty bit)

- Each line of cache has a dirty bit E

! 1.cChange data

l 2. Change data

Memory
44

= Write through + no write allocate

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Summary (2/3)

+» The 3 C’s of cache misses: compulsory, conflict, and capacity

" There are both parameter and code changes that can help with each kind

« Write-miss policies:

. . 3. Change data (and set dirty bit)
= Write back + write allocate !

- Each line of cache has a dirty bit

D] Cache
1. Fetch block I @ 2. Write back (if evicted block is dirty)

= Write through + no write allocate

1. Change data

45

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Summary (3/3)

« Cache blocking is a cache optimization technique that reorders memory
accesses to maximize the use of cache blocks while they are in the cache

= Use data in cache block as much as possible before evicting that block

= Subdivide larger problem (e.g., matrix multiplication) into smaller ones where
working set can fit in the cache

S e T

+ Cache-friendly code:
= Work with a reasonably small amount of data at any given time

= Use small strides whenever possible in terms of loop and index ordering
" Focus your time and energy on optimizing the inner loop code

46

YA/ UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Bonus Slides!

47

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Cache Miss Examples: Compulsory, Conflict

+ Code analysis from last lecture:

#define SIZE 8 Cache:

00 f———F-———————-
short ar[SIZE][SIZE], sum = 0; // &ar=0x200 ! ! !
for (int i = 0; i < SIZE; i++) i i !
: o ao oL O e S E
for (int j O; j < SIZE; j++) | | |
sum += ar[j][i]; L
=
" ar[0][0] and ar[1][0] are compulsory misses ! ! !
11F-—Fr——F——————-
| | |

« Never accessed those blocks before

= ar[0][1] is a conflict miss
- Its block got kicked out earlier by accessto ar[4][0]
- Two other sets were unused

48

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV

Cache Miss Examples: Capacity

+» Assume array ar_cap is twice as big as cache:

for (int i = 0; i < SIZE; i++)
sum = ar_capl[i];

for (int i O; 1 < SIZE; i++)
ar_capl[i] = 0;

= All misses in the second loop are capacity misses
- First loop accesses consecutive blocks, so cache is guaranteed to fill up
- First half of first loop fills cache, second half of first loop completely replaces the first half in

cache
- Second loop revisits block from array that are no longer in the cache

49

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Homework Setup (1/2)

+ Homework 19 explores the idea of a cache image — a view of memory
chunking by cache size instead of block size

= Each cache image maps entirely onto (i.e., exactly fills) the cache
= Each cache image has a unique tag (instead of block number)

Addresses Block Data Set Tag Block Data

00 00 XX : 00 ; ;
Memory 00 01 XX 01 |

00 10 XX 10 !
00 11 XX 11 ;
01 00 XX
01 01 XX : cache
01 10 XX Lo image 1
01 11 XX L
10 00 XX
10 01 XX
10 10 XX

10 11 XX L 50

]

I __HereK=4B
| and C/K =4
I

Cache

cache
image 2

YA UNIVERSITY of WASHINGTON L19: Memory & Caches IV CSE351, Autumn 2025

Homework Setup (2/2)

+» Assume our code currently does: R 0x00, W 0x20, R 0x01, W 0x21

® \What is the current miss rate?
" How could we rearrange these accesses to improve our miss rate?

Addresses Block Data Set Tag Block Data

00 00 XX : : 00 ; ;
Memory 00 01 XX 01 |

00 10 XX 10 !
00 11 XX 11 ;
01 00 XX
01 01 XX
01 10 XX
01 11 XX
10 00 XX
10 01 XX
10 10 XX

10 11 XX L 51

]

I __HereK=4B
| and C/K =4
I

Cache
cache

image 1

cache
image 2

	Slide 1: The Hardware/Software Interface Memory & Caches IV
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline (1/5)
	Slide 4: Types of Cache Misses: 3 C’s (Review)
	Slide 5: Parameters and Misses (Review)
	Slide 6: Lecture Outline (2/5)
	Slide 7: Data Consistency
	Slide 8: Cache Write Policies (Review)
	Slide 9: Write-back, Write Allocate Example Setup
	Slide 10: Write-back, Write Allocate Example Access #1 Step 1
	Slide 11: Write-back, Write Allocate Example Access #1 Step 2
	Slide 12: Write-back, Write Allocate Example Access #1 Result
	Slide 13: Write-back, Write Allocate Example Access #2 Step 1
	Slide 14: Write-back, Write Allocate Example Access #2 Result
	Slide 15: Write-back, Write Allocate Example Access #3 Step 1
	Slide 16: Write-back, Write Allocate Example Access #3 Step 2
	Slide 17: Polling Question
	Slide 18: Lecture Outline (3/5)
	Slide 19: Optimizations for the Memory Hierarchy
	Slide 20: Cache-Friendly Code
	Slide 21: The Memory Mountain
	Slide 22: Lecture Outline (4/5)
	Slide 23: Example: Matrix Multiplication
	Slide 24: Matrices in Memory
	Slide 25: Naïve Matrix Multiply
	Slide 26: Cache Miss Analysis (Naïve)
	Slide 27: Cache Miss Analysis (Naïve)
	Slide 28: Cache Miss Analysis (Naïve)
	Slide 29: Linear Algebra to the Rescue (1)
	Slide 30: Linear Algebra to the Rescue (2)
	Slide 31: Blocked Matrix Multiply
	Slide 32: Cache Miss Analysis (Blocked)
	Slide 33: Cache Miss Analysis (Blocked)
	Slide 34: Cache Miss Analysis (Blocked)
	Slide 35: Matrix Multiply Visualization
	Slide 36: Lecture Outline (5/5)
	Slide 37: Cache Motivation, Revisited
	Slide 38: Cache “Conclusions”
	Slide 39: Common Case Optimizations
	Slide 40: The Common Case and Normativity
	Slide 41: Example: TSA Body Scanners
	Slide 42: Design Considerations
	Slide 43: Discussion Questions
	Slide 44: Summary (1/3)
	Slide 45: Summary (2/3)
	Slide 46: Summary (3/3)
	Slide 47: Bonus Slides!
	Slide 48: Cache Miss Examples: Compulsory, Conflict
	Slide 49: Cache Miss Examples: Capacity
	Slide 50: Homework Setup (1/2)
	Slide 51: Homework Setup (2/2)

