
CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

The Hardware/Software Interface
Memory & Caches III

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

http://xkcd.com/908/

Guest Instructor:
Naama Amiel

http://xkcd.com/908/

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Lecture Outline (1/3)

v Associativity and Replacement
v Cache Organization
v Example Cache Problems

2

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Review: Direct-Mapped Cache Problem

v What happens if we access the
following addresses?
§ 8, 24, 8, 24, 8, …?
§ Conflict in cache (misses!)
§ Rest of cache goes unused

v Solution?

3

Addresses Block Data
00 00 XX
00 01 XX
00 10 XX
00 11 XX
01 00 XX
01 01 XX
01 10 XX
01 11 XX
10 00 XX
10 01 XX
10 10 XX
10 11 XX
11 00 XX
11 01 XX
11 10 XX
11 11 XX

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Associativity Motivation

v What if we could store data in any place in the cache?
§ More complicated hardware = more power consumed, slower

v So we combine the two ideas:
§ Each address maps to exactly one set, each set can store block in some # of ways

4

0
1
2
3
4
5
6
7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct-mapped fully associative

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Associativity (Review)

v Associativity (𝐸): # of ways for each set
§ Such a cache is called an “𝐸-way set associative cache”
§ We index into cache sets, of which there are 𝑆 = (𝐶/𝐾)/𝐸
§ Use lowest log$ 𝑆 = 𝒔 bits of block address

• Direct-mapped: 𝐸 = 1, so 𝒔 = log! 𝐶/𝐾 as we saw previously
• Fully associative: 𝐸 = 𝐶/𝐾, so 𝒔 = 0 bits

5

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝑡) Index (𝑠) Offset (𝑘)

Note: The textbook
uses “b” for offset bits

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example Placement

v Where would data from address 0x1833 be placed?
§ Binary: 0b 0001 1000 0011 0011

6

𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒌)𝒎-bit address: Index (𝒔)

𝒔 = log! 𝐶/𝐾/𝐸 𝒌 = log! 𝐾𝒕 = 𝒎–𝒔–𝒌

𝒔 = ? 𝒔 = ?

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Polling Questions

v We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?
A. 2
B. 4
C. 8
D. 16

v If addresses are 16 bits wide, how wide is the Tag field?

7

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Block Placement and Replacement (Review)

v Any empty block in the correct set may be used to store block
§ Valid bit for each cache block indicates if valid (1) or mystery (0) data

v If there are no empty blocks, which one should we replace?
§ No choice for direct-mapped caches
§ Caches typically use something close to least recently used (LRU)

(hardware usually implements “not most recently used”)

8

Set V Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set V Tag Data

0

1

2

3

Set V Tag Data

0

1

2-way set associative 4-way set associative

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Cache Read Revisited

9

0 1 2 𝐾-1TagV

𝒕 bits 𝒔 bits 𝒌 bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2"

𝐸 = blocks/lines per set

𝐾 = bytes per block

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example: Direct-Mapped (𝐸 = 1) Cache (1/3)

10

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

𝒕 bits 0…01 100
Address of int:

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

find set

𝑆=2" sets

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example: Direct-Mapped (𝐸 = 1) Cache (2/3)

11

𝒕 bits 0…01 100
Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example: Direct-Mapped (𝐸 = 1) Cache (3/3)

12

𝒕 bits 0…01 100
Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example: Set-Associative (𝐸 = 2) Cache (1/?)

13

𝒕 bits 0…01 100
Address of short:

find set

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

Example: Set-Associative (𝐸 = 2) Cache (2/3)

14

𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

2-way: Two lines per set
Block Size 𝐾 = 8 B Address of short:

Tag

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

Example: Set-Associative (𝐸 = 2) Cache (3/3)

15

𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short:
2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Lecture Outline (2/3)

v Associativity and Replacement
v Cache Organization
v Example Cache Problems

16

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Notation Review

v We just introduced a lot of new variable names!
§ Please be mindful of block size notation when you look at past exam questions

17

Parameter Variable Formulas

Block size 𝐾 (𝐵 in	book)

𝑀 = 2𝒎↔𝒎 = log!𝑀
𝑆 = 2𝒔↔ 𝒔 = log! 𝑆
𝐾 = 2𝒌↔𝒌 = log! 𝐾

𝐶 = 𝐾×𝐸×𝑆
𝒔 = log! 𝐶/𝐾/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒌

Cache size 𝐶
Associativity 𝐸

Number of Sets 𝑆
Address space 𝑀
Address width 𝒎
Tag field width 𝒕

Index field width 𝒔
Offset field width 𝒌 (𝒃 in	book)

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

● ● ●

General Cache Organization (𝑆, 𝐸, 𝐾)

18

𝐸 = blocks (or lines) per set

𝑆 sets
= 2"

set

line (block plus
management bits)

Cache size:
𝐶 = 𝐾×𝐸×𝑆 data bytes
(doesn’t include V or Tag)

● ● ●

● ● ●

● ● ●

●
●
●

●
●
●

●
●
●

cache

0 1 2 K-1● ● ●TagV

valid bit
𝐾 = bytes per block

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Intel Core i7 Cache Hierarchy

19

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Learning About Your Machine

v Linux:
§ lscpu
§ ls /sys/devices/system/cpu/cpu0/cache/index0/

• Example: cat /sys/devices/system/cpu/cpu0/cache/index*/size

v Windows:
§ wmic memcache get <query> (all values in KB)
§ Example: wmic memcache get MaxCacheSize

v Modern processor specs: http://www.7-cpu.com/

20

http://www.7-cpu.com/

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Lecture Outline (3/3)

v Associativity and Replacement
v Cache Organization
v Example Cache Problems

21

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example Cache Parameters Problem

v 1 KiB address space, 125 cycles to go to memory.
Fill in the following table:

22

Cache Size 64 B
Block Size 8 B

Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits

Index Bits
Offset Bits

AMAT

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Example Code Analysis Problem
v Assuming the cache starts cold (all blocks invalid) and sum, i, and j

are stored in registers, calculate the miss rate:
§ 𝑚 = 10 bits, 𝐶 = 64 B, 𝐾 = 8 B, 𝐸 = 2

23

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Cache Simulator

v https://courses.cs.washington.edu/courses/cse351/cachesim/
§ From course website: Simulators → Cache Simulator
§ Allows you to play around with the effects of cache parameters and policies
§ Lots of neat features like highlighting, hover text, ability to rewind and replay

accesses, and copy-and-paste access patterns

v Ways to use:
§ Take advantage of “explain mode” and navigable history to test your own

hypotheses and answer your own questions
§ A tutorial Ed lesson is available
§ Will be used in HW19 – Lab 4 Preparation

https://courses.cs.washington.edu/courses/cse351/cachesim/
https://edstem.org/us/courses/80075/lessons/140758/slides/796803

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Cache Simulator Demo

v https://courses.cs.washington.edu/courses/cse351/cachesim/
§ From course website: Simulators → Cache Simulator
§ Allows you to play around with the effects of cache parameters and policies
§ Lots of neat features like highlighting, hover text, ability to rewind and replay

accesses, and copy-and-paste access patterns

v Let’s simulate the example code analysis problem:
#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

https://courses.cs.washington.edu/courses/cse351/cachesim/

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Summary (1/2)

v Associativity gives us flexibility in where to place blocks in the cache
§ Group 𝐸 slots into sets, means there are 𝐸 ways to place block within each set

• Direct-mapped is 𝐸 = 1, fully associative is 𝐸 = # of slots in cache (i.e., 𝑆 = 1)
• Helps avoid conflicts in each set at the expense of slightly longer and more complex searching &

placing in the cache
• By default, we will replace the least-recently used block in a set

§ Index → Set, 𝑆 = (𝐶/𝐾)/𝐸, still 𝑠 = log$ 𝑆

26

Set Tag Data
0
1
2
3
4
5
6
7

Set Tag Data

0

1

2

3

Set Tag Data

0

1

Direct-mapped 2-way set associative 4-way set associative

Decreasing associativity Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison
Selects byte
from block

Tag (𝑡) Index (𝑠) Offset (𝑘)

CSE351IntroductionL18: Memory & Caches III CSE351, Autumn 2025

Summary (2/2)

v Management bits
§ Information needed for proper management of the cache & its data,

but not counted in the cache size
§ Valid bit for validity of data
§ Tag bits for identifying which block

27

● ●
●

𝐸 = blocks (or lines) per set

𝑆 sets
= 2%

set

line (block plus
management bits)

Cache size:
𝐶 = 𝐾×𝐸×𝑆 data bytes
(doesn’t include V or Tag)

● ●
●
● ●
●
● ●
●

●
●
●

●
●
●

●
●
●

cache

0 1 2 K-1● ● ●TagV

valid bit 𝐾 = bytes per block

