YA/ UNIVERSITY of WASHINGTON

L18: Memory & Caches llI

CSE351, Autumn 2025

The Hardware/Software Interface
Memory & Caches Il

Guest Instructor:

Naama Amiel

Teaching Assistants:

Anthony Mangus
Grace Zhou
Jiuyang Lyu

Kurt Gu

Mendel Carroll
Naama Amiel
Rose Maresh
Violet Monserate

Divya Ramu
Jessie Sun
Kanishka Singh
Liander Rainbolt
Ming Yan

Pollux Chen
Soham Bhosale

Q

\WJHATS THIS?

THE CLouD.

\:‘
2

HUH? T ALWAYS THOUGHT THE
CLOUD Whs A HUGE, AMORPHOUS
NETWORK, OF SERVERS SOMEWHERE.

SERVER TiME FROM EVERONE |~

ELSE. IN THE END, THEY'RE
ALL GETTING [T HERE,

l

i_&

(YERH, BUT EVERYONE. BINS

Instructors:
Justin Hsia, Amber Hu

HOW? YOURE ON
A CPBLE MODEM.

Z/ THERES ALOT
OF CACHING.

o

SHOULD THE CORD BE
STRETCHED ACRDSS
THE ROOM LIKE THIS?

OF COURSE. IT
HAS TO REACH
THE SERVER,

AND THE SERVER
15 OVER THERE.

N
4

WHAT IF SOMEONE TRIFS ON IT7

/ WHO WOULD WANT TO DO THAT?
IT SOUNDS UNPLERSANT.

UH. SOMETIMES PEORLE K
DO STUFF BY ACCIDENT.
T DONT THINK
5 I KNOW ANYBODY
LIKE THAT,

K&

http://xkcd.com/908/

http://xkcd.com/908/

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill

Relevant Course Information

2+ HW 17 due Friday (11/7)
= Don’t wait too long, this is a big HW

+» HW 18 due Wednesday (11/12)

+ Lab 3 due Friday (11/7)
= Late days open until Monday (11/10)

= No lecture on Monday, but we still have office hours!

+ Lab 4 released on Friday (11/7)

= Two-part lab about caching; you can do part 1 with content from this lecture!

+» Midterm grades will be released when we can

= Regrade requests will be available afterward

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Lecture Outline (1/3)

+ Associativity and Replacement
+ Cache Organization
+» Example Cache Problems

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches III CSE351, Autumn 2025

Review: Direct-Mapped Cache Problem

Memory Cache
Addresses Block Data Index Tag Block Data
ool@ xx [T T 1 o0 [22 T
00[01|XX 111 01 22 111 Here K=48B
oofrelxx [T T | 10 1 1 | [[andC/K=4
00[11[XX L1 11 |22 Cooa]
01|oe XX B
01/01|XX L !
oxfiolxx [«» What happens if we access the
OL[LL/Xx | 1 1 | following addresses?
10/00|XX L
1o|01 XX T T m 8 24,8, 24,8, ..7
Lopexx | L L = Conflict in cache (misses!)
10[11|XX Lo
11|00 X | 1 1 i = Rest of cache goes unused
11[01|XX - ,
11fiexx [| | + Solution?
11]11]XX T

YA/ UNIVERSITY of WASHINGTON

L18: Memory & Caches llI

Associativity Motivation

«» What if we could store data in any place in the cache?

" More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

CSE351, Autumn 2025

= Each address maps to exactly one set, each set can store block in some # of ways

Nou b WNERO

1-way:
8 sets,
1 block each

direct-mapped

2-way:
4 sets,
2 blocks each
Set
0 ..
1
2 1.
31

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks

fully associative

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Note: The textbook
uses “b” for offset bits

Associativity (Review)

« Associativity (E): # of ways for each set
= Such a cache is called an “E-way set associative cache”
= We index into cache sets, of which there are S = (C/K)/E

= Use lowest log,(S) = s bits of block address
- Direct-mapped: E =1,s0s=1log,(C/K) as we saw previously

- Fully associative: E = C/K, so s =0 bits

Used for tag comparison Selects the set Selects the byte from block
I I I
Tag (1) Index (s) Offset (k)

— |ncreasing associativity

Decreasing associativity «— e

. J| Fully associative
Direct mapped | (only one set)
(only one way)

YA/ UNIVERSITY of WASHINGTON

Example Placement

L18: Memory & Caches llI

CSE351, Autumn 2025

block size: 16B
capacity: 8 blocks
address: 16 bits

+» Where would data from address ©x1833 be placed?
= Binary: Ob 0001 1000 0011 06011

\ICDU'IPUUNI—\OE

m-bit address:

S =

Direct-mapped
Data

=m-s-k s=log,(C/K/E) k-=log,(K)
Tag (1) Index (s) Offset (k)
Ss=___ S=___
2-way set associative 4-way set associative
Set Data Set Data
0
0
1
2
1
3

YA UNIVERSITY of WASHINGTON L18: Memory & Caches Ili

CSE351, Autumn 2025

Polling Questions

+ We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

A.

B. 4
C. 8
D. 16

+ If addresses are 16 bits wide, how wide is the Tag field?

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches III CSE351, Autumn 2025

Block Placement and Replacement (Review)

+» Any empty block in the correct set may be used to store block
= Valid bit for each cache block indicates if valid (1) or mystery (0) data

+ If there are no empty blocks, which one should we replace?

= No choice for direct-mapped caches

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

Direct-mapped 2-way set associative 4-way set associative
Set V Data Set V Data Set V Data
0 0

0

1

2

Nooud wN R

10

YA/ UNIVERSITY of WASHINGTON

CSE351, Autumn 2025

Cache Read Revisited

S = # sets<
= 25

L18: Memory & Caches llI

E = blocks/lines per set

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

k bits

block

- A 3) Locate data starting
at offset
(BN B J
Address of byte in memory:
eee & bits s bits
eee tag set
index offset
o000
(BN B J
data begins at this offset
\Y Tag 112 ccce- K-1
0 . J
valid bit Y

K = bytes per block

11

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches III CSE351, Autumn 2025

Example: Direct-Mapped (E = 1) Cache (1/3)

Direct-mapped: One line per set
Block Size K =8 B

4 Address of int:
Vv Tag ol1l213lals]el7 _
& bits 0..01 | 100
Vv Tag ol1l213lals]el7 ,
find set
5=27 sets<
Vv Tag ol1l213lals]el7
[3 I)
Vv Tag ol1l213lals]el7
\.

12

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill

Example: Direct-Mapped (E = 1) Cache (2/3)

Direct-mapped: One line per set
Block Size K =8 B

valid? + match?: yes = hit

Address of int:

Y Tag ol1]2]3|4]|5]6]7

& bits

0..01

100

block offset

CSE351, Autumn 2025

13

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Example: Direct-Mapped (E = 1) Cache (3/3)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
& bits 0..01 | 100

valid? + match?: yes = hit

Vv Tag ol1l2|3]4]l5]|6]7
block offset
int (4 B) is here
48) This is why we
want alignment!

No match? Then old line gets evicted and replaced

14

YA/ UNIVERSITY of WASHINGTON

Example: Set-Associative (E = 2) Cache (1/?)

2-way: Two lines per set
Block Size K =8 B

L18: Memory & Caches llI

Address of short:

@ bits 0..01 | 100
v| [tag | [ofz1]2]3 Tag_| s5|6]7
v| [Teg | — I find set
ag_| [o]1]2]3 Tag 5167
v| [tag | [of1]2]3 Tag_| 5|6]7
o0 0
V| [tag | [of1]2]3 Tag_| s5|6]7

CSE351, Autumn 2025

15

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Example: Set-Associative (E = 2) Cache (2/3)

2-way: Two lines per set

Block Size K = 8 B Address of short:

@ bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| Ltag | [o]1]2]3f4]s5]6]7 V| [tag | lof1]2]3fa]sl6]7}] —

block offset

16

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill CSE351, Autumn 2025

Example: Set-Associative (E = 2) Cache (3/3)

2-way: Two lines per set

Block Size K = 8 B Address of short:

@ bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [1ag_ | lolz]2f3la]s]el7| ILv] [Tae | [olzl2]3]2]s]6l7]| —

block offset

short (2 B) is here

No match?
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

17

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Lecture Outline (2/3)

% Associativity and Replacement
+» Cache Organization
+» Example Cache Problems

18

L18: Memory & Caches llI CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Notation Review

+» We just introduced a lot of new variable names!
= Please be mindful of block size notation when you look at past exam questions

" varometer | vrioble | Formlas

Block size K (B in book)
Cache size C
M=2"om=log, M
Associativity E S=2os=log,S
Number of Sets S K=2"ek=1log, K
Address space M
P C = KXEXS

Address width m s =log,(C/K/E)
Tag field width m=:i+s+k
Index field width S

Offset field width /& (b in book)

19

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches III CSE351, Autumn 2025

General Cache Organization (S, E, K)

E =blocks (or lines) per set

s A -
cache ¢ >
[N N J
S\
" line (block plus
XX management bits)
S sets < e
- 7S
=2 - : :
[J PY o
[J PY o
[N N J
\.
Cache size:
C = KXEXS data bytes
v T 0]l1]12] eee | k1
(doesn’t include V or Tag) _‘L ag
—

N —
valid bit gl
K = bytes per block 20

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches III CSE351, Autumn 2025

Intel Core i7 Cache Hierarchy

Processor package

__

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

. Core 0 Core 3 ' Block size:

' 64 bytes for all caches

! Regs Regs !

L1 i-cache and d-cache:
: L1 L1 L1 L1 32 KiB, 8-way,

: d-cache| |i-cache d-cache| |i-cache Access: 4 cycles

. L2 unified cache:

! L2 unified cache L2 unified cache ! 256 KiB, 8-way,
Access: 11 cycles

Main memory

21

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill

Learning About Your Machine

Linux:

o%

*

= lscpu
= |s /sys/devices/system/cpu/cpu0/cache/index0/

- Example: cat /sys/devices/system/cpu/cpu0/cache/index*/size
Windows:

" wmic memcache get <query> (all valuesin KB)
- Example: wmic memcache get MaxCacheSize

. Mac:

= sysctl retrieves (* and writes!) system information
- Example: sysctl hw.lldcachesize gets the size of the L1 d-cache in bytes

L)

0’0

4

L)

L)

< Modern processor specs: http://www.7-cpu.com/

>

22

http://www.7-cpu.com/

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Lecture Outline (3/3)

% Associativity and Replacement
% Cache Organization
+ Example Cache Problems

23

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill CSE351, Autumn 2025

Example Cache Parameters Problem

+» 1 KiB address space, 125 cycles to go to memory.
Fill in the following table:

Cache Size 64 B
Block Size 8B
Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits
Index Bits
Offset Bits
AMAT

24

YA/ UNIVERSITY of WASHINGTON

L18: Memory & Caches llI

CSE351, Autumn 2025

Example Code Analysis Problem

= Assuming the cache starts cold (all blocks invalid) and sum, 1, and j
are stored in registers, calculate the miss rate:

= m=10bits, C=64B,K=8B,E =2

#define SIZE 8

short ar[SIZE][SIZE], sum =

= 0; // &ar=0x200
for (int 1 = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[j][1];

cache, T
0J

-~ ,— - —

o[- - - - -

N

25

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Il CSE351, Autumn 2025

Cache Simulator

« https://courses.cs.washington.edu/courses/cse351/cachesim/

" From course website: Simulators — Cache Simulator

= Allows you to play around with the effects of cache parameters and policies

= |ots of neat features like highlighting, hover text, ability to rewind and replay
accesses, and copy-and-paste access patterns

« Ways to use:

= Take advantage of “explain mode” and navigable history to test your own
hypotheses and answer your own questions

= A tutorial Ed lesson is available
= Will be used in HW19 — Lab 4 Preparation

https://courses.cs.washington.edu/courses/cse351/cachesim/
https://edstem.org/us/courses/80075/lessons/140758/slides/796803

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill

CSE351, Autumn 2025

Cache Simulator Demo

« https://courses.cs.washington.edu/courses/cse351/cachesim/
" From course website: Simulators — Cache Simulator
= Allows you to play around with the effects of cache parameters and policies

= |ots of neat features like highlighting, hover text, ability to rewind and replay
accesses, and copy-and-paste access patterns

+ Let’s simulate the example code analysis problem:

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; 1 < SIZE; 1i++)
for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

https://courses.cs.washington.edu/courses/cse351/cachesim/

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill CSE351, Autumn 2025

Summary (1/2)

+ Associativity gives us flexibility in where to place blocks in the cache

= Group E slots into sets, means there are E ways to place block within each set
- Direct-mapped is E = 1, fully associative is E = # of slots in cache (i.e., S = 1)

- Helps avoid conflicts in each set at the expense of slightly longer and more complex searching &
placing in the cache

- By default, we will replace the least-recently used block in a set

" Index — Set, S = (C/K)/E, still s = log,(S)

Direct-mapped 2-way set associative 4-way set associative Selects byte
Set Data Set Data Set Data Used for tag comparison Selects the set from block
0
: : 0 T T T
g 1 Tag () Index (s) Offset (k)
g 2 _ o — Increasing associativity
. 1 Decrez;.\smg associativity «— | Fully associative
; 3 Direct mapped "| (only one set)

(only one way)
28

YA/ UNIVERSITY of WASHINGTON L18: Memory & Caches Ill

CSE351, Autumn 2025

Summary (2/2)

+» Management bits

" Information needed for proper management of the cache & its data,

but not counted in the cache size
= Valid bit for validity of data
= Tag bits for identifying which block

E = blocks (or lines) per set

_AL
I'd Y
cache\g —
P A
(N J
[]
S sets y oo
S []
= 2 [[] [J
[] [] [)
[] [] [)
(N J
\ []
Cache size:

C = KXEXS data bytes
(doesn’t include V or Tag)

_— set

™ line (block plus
management bits)

| Tog | [O1L]2]* e~ *1x1]
N _J
—

valid bit

K = bytes per block

29

