
CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

The Hardware/Software Interface
Memory & Caches II

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/
https://what-if.xkcd.com/111/
https://what-if.xkcd.com/111/

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Relevant Course Information

❖ HW 16 due Wednesday (11/5)

❖ HW 17 due Friday (11/7)

▪ Don’t wait too long, this is a big HW (includes this lecture)

❖ Lab 3 due Friday (11/7)

▪ Late days open until Monday (11/10)

▪ Monday is Veteran’s Day

▪ No lecture, but some office hours (see Ed)

❖ Midterm grades will be released when we can

▪ Regrade requests will be available afterward

2

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Lecture Outline (1/2)

❖ Blocks and Addresses

❖ Direct-Mapped Caches

4

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Cache Sizes (Review)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Cache Size (𝐶): amount of data the $ can store

▪ Cache can only hold so much data (subset of next level)

▪ Given in bytes (𝐶) or number of blocks (𝐶/𝐾)

▪ Example: 𝐶 = 32 KiB using 64-B blocks means that it can hold _____ blocks

5

Note: The textbook
uses “B” for block size

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Memory and Blocks (Review)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ The address space is divided into adjacent, numbered blocks

▪ For address 𝐴 of width 𝑚 bits, can determine its block number via 𝐴/𝐾

▪ Example: Let 𝑚 = 4 bits, 𝐾 = 4 B

6

Note: The textbook
uses “B” for block size

start of Mem → ← end of Mem

0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE

0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF

Block 0 Block 1 Block 2 Block 3

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Addresses and Blocks (Review)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Remaining address bits tell you ordered position of byte within the block

▪ (address) modulo (# of bytes in a block) = 𝐴 % 𝐾

▪ Offset field is the low-order log2 𝐾 = 𝒌 bits of address
• mod 2𝑛 = 𝑛 lowest bits

7

Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒌 bits𝒎 − 𝒌 bits

Note: The textbook
uses “b” for offset bits

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Addresses and Blocks Example

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Example:

▪ If we have 6-bit addresses and block size 𝐾 = 4 B, which block and byte does 0x19
refer to?

8

Note: The textbook
uses “b” for offset bits

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Lab 1a Callback

❖ The within_same_block function asks you to determine if the
addresses stored by two pointers lie within the same block of
64-byte aligned memory

▪ Solution: Right shift by 6 and compare

9

Note: The textbook
uses “B” for block size

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Polling Questions (1/2)

❖ We have a cache with the following parameters:

▪ Block size of 8 bytes

▪ Cache size of 4 KiB

❖ How many blocks can the cache hold?

❖ How many bits wide is the block offset field?

❖ Which of the following addresses would fall under block number 3?

A. 0x3 B. 0x1F C. 0x30 D. 0x38

10

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Lecture Outline (2/2)

❖ Blocks and Addresses

❖ Direct-Mapped Caches

11

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Block Placement (Review)

❖ Where should data go in the cache?

▪ We need a mapping from memory addresses to specific locations in the cache
to make checking the cache for an address fast

❖ What is a data structure that provides fast lookup?

▪ Hash table!

12

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Hash Tables for Fast Lookup

❖ Apply hash function to map data to “buckets”

▪ Goals: (1) fast/simple calculation
 (2) use all buckets “well”

13

0

1

2

3

4

5

6

7

8

9

Insert:
5
27
34

102
119

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Direct-Mapped Address Hashing (Review)

❖ Map block number to position in cache

▪ 𝑆 = 𝐶/𝐾 is number of cache indices

▪ (block number) mod (# of indices)

▪ Index field is the low-order log2 𝑆 = 𝒔 bits
of the block number

14

Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Direct-Mapped Address Hashing Consequence

❖ Map block number to position in cache

▪ 𝑆 = 𝐶/𝐾 is number of cache indices

▪ (block number) mod (# of indices) lets
adjacent blocks fit in cache simultaneously!
• Consecutive blocks go in consecutive cache

indices

15

Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Block Placement Example

❖ 6-bit addresses, block size 𝐾 = 4 B, and our cache holds
𝑆 = 4 blocks.

❖ A request for address 0x2A results in a cache miss. Which index does this
block get loaded into and which 3 other addresses are loaded along with
it?

16

Cache:

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Place Data in Cache by Hashing Address

❖ Collision!

▪ This might confuse the cache later when we
access the data

▪ Solution?

17

Addresses Block Data

0000 XX

0001 XX

0010 XX

0011 XX

0100 XX

0101 XX

0110 XX

0111 XX

1000 XX

1001 XX

1010 XX

1011 XX

1100 XX

1101 XX

1110 XX

1111 XX

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Tags Differentiate Blocks in Same Index

❖ Tag = rest of address bits

▪ 𝒕 bits = 𝒎 − 𝒔 − 𝒌

▪ Check this during a cache lookup

18

Addresses Block Data

00 00 XX

00 01 XX

00 10 XX

00 11 XX

01 00 XX

01 01 XX

01 10 XX

01 11 XX

10 00 XX

10 01 XX

10 10 XX

10 11 XX

11 00 XX

11 01 XX

11 10 XX

11 11 XX

Memory Cache

Index Tag Block Data

00 00

01

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

Analogy: Looking for your friend in a crowded
room, so you yell their first name (index)

Several people respond “yeah?”, so you get
more specific: first name + last name (tag)

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Checking for a Requested Address

❖ CPU sends address request for chunk of data

▪ Address and requested data are not the same thing!
• Analogy: your friend ≠ their phone number

❖ TIO address breakdown:

1) Index field tells you where to look in cache

2) Tag field lets you check that data is the block you want

3) Offset field selects specified start byte within block

▪ Note: 𝒕 and 𝒔 sizes will change based on hash function

19

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Index (𝒔)

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Polling Questions (2/2)

❖ Based on the following behavior, which of the following block sizes is
NOT possible for our cache?

▪ Cache starts empty, also known as a cold cache

▪ Access (addr: hit/miss) stream:
• (0xE: miss), (0xF: hit), (0x10: miss)

A. 4 bytes

B. 8 bytes

C. 16 bytes

D. 32 bytes

20

⋯
0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF 0x11

0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE 0x10 0x12

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Polling Questions Solution (2/2)

❖ Based on the following behavior, which of the following block sizes is
NOT possible for our cache?

▪ Cache starts empty, also known as a cold cache

▪ Access (addr: hit/miss) stream:
• (0xE: miss), (0xF: hit), (0x10: miss)

• Need 0xE and 0xF in same block; 0x10 in different block

A. 4 bytes

B. 8 bytes

C. 16 bytes

D. 32 bytes

21

#1 #2 #3 ⋯
0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF 0x11

0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE 0x10 0x12

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Direct-Mapped Cache Summary

❖ Hash function: (block number) mod
(# of indices in cache)

▪ Each memory address maps to exactly one
index in the cache

▪ Fast and simple to find a block, uses all
cache indices

22

Addresses Block Data

00 00 XX

00 01 XX

00 10 XX

00 11 XX

01 00 XX

01 01 XX

01 10 XX

01 11 XX

10 00 XX

10 01 XX

10 10 XX

10 11 XX

11 00 XX

11 01 XX

11 10 XX

11 11 XX

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Direct-Mapped Cache Problem

❖ What happens if we access the
following addresses?

▪ 8, 24, 8, 24, 8, …?

▪ Conflict in cache (misses!)

▪ Rest of cache goes unused

❖ Solution?

23

Addresses Block Data

00 00 XX

00 01 XX

00 10 XX

00 11 XX

01 00 XX

01 01 XX

01 10 XX

01 11 XX

10 00 XX

10 01 XX

10 10 XX

10 11 XX

11 00 XX

11 01 XX

11 10 XX

11 11 XX

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

Next lecture!

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Homework Setup (1/2)

struct WolfPos {
 float x;
 float y;
 float z;
 int id;
};
struct WolfPos grid[16][16];

▪ Assume &grid = 0

24

❖ What are the addresses of the
following pieces of data?

▪ &(grid[0][0].id) =

▪ &(grid[1][0].y) =

▪ &(grid[3][4].x) =

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Homework Setup (2/2)

struct WolfPos {
 float x;
 float y;
 float z;
 int id;
};
struct WolfPos grid[16][16];

▪ Assume &grid = 0

25

❖ Cold direct-mapped cache with
𝐶 = 1024 B and 𝐾 = 16 B

▪ What happens if we access
grid[0][0].x and then
grid[4][0].x?

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Summary (1/2)

❖ Cache parameters define the cache geometry:

▪ Block size is number of bytes per block

▪ Cache size is number of bytes (or blocks) of data the cache can hold

❖ Finding a byte in the cache:

▪ Offset refer to which byte in block

▪ Index refers to which block in cache

❖ Example:

▪ 𝐾 = 4 B, 𝐶 = 16 B = 4 blocks

26

Tag Block Data

block size

cache size

Index

0b00

0b01

0b10

0b11

Offset: 0b00 0b01 0b10 0b11

CSE351IntroductionL17: Memory & Caches II CSE351, Autumn 2025

Summary (2/2)

❖ Direct-mapped cache: each block in cache is assigned a unique index

▪ Uses hash function of (block number) mod (# of cache indices)
• Deterministic placement of each block, with many blocks mapping into the same index

• Tag bits stored in cache and used to distinguish between blocks that map to same index

❖ Accessing the cache:
(TIO address breakdown)

1) Index field tells you where to look in cache (width 𝑠 = log2 𝑆)

2) Tag field lets you check that data is the block you want (width 𝑡 = 𝑚 − 𝑠 − 𝑘)

3) Offset field selects specified start byte within block (width 𝑘 = log2 𝐾)

27

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Index (𝒔)

	Slide 1: The Hardware/Software Interface Memory & Caches II
	Slide 2: Relevant Course Information
	Slide 4: Lecture Outline (1/2)
	Slide 5: Cache Sizes (Review)
	Slide 6: Memory and Blocks (Review)
	Slide 7: Addresses and Blocks (Review)
	Slide 8: Addresses and Blocks Example
	Slide 9: Lab 1a Callback
	Slide 10: Polling Questions (1/2)
	Slide 11: Lecture Outline (2/2)
	Slide 12: Block Placement (Review)
	Slide 13: Hash Tables for Fast Lookup
	Slide 14: Direct-Mapped Address Hashing (Review)
	Slide 15: Direct-Mapped Address Hashing Consequence
	Slide 16: Block Placement Example
	Slide 17: Place Data in Cache by Hashing Address
	Slide 18: Tags Differentiate Blocks in Same Index
	Slide 19: Checking for a Requested Address
	Slide 20: Polling Questions (2/2)
	Slide 21: Polling Questions Solution (2/2)
	Slide 22: Direct-Mapped Cache Summary
	Slide 23: Direct-Mapped Cache Problem
	Slide 24: Homework Setup (1/2)
	Slide 25: Homework Setup (2/2)
	Slide 26: Summary (1/2)
	Slide 27: Summary (2/2)

