YA UNIVERSITY of WASHINGTON L17: Memory & Caches II CSE351, Autumn 2025

The Hardware/Software Interface

Memory & Caches Il
T'M SORRY, LJE (CANT APPROVE
Instructors: THIS PERMIT YOUR mmNSéEMT
: : ZONED FOR GIANT-MONEY-BIN
Amber Hu, Justin Hsia mmsmmm
S0, 100 R

Teaching Assistants:
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun

Jiuyang Lyu Kanishka Singh e roos®

Kurt Gu Liander Rainbolt McDuck | '
Mendel Carroll Ming Yan

Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/
https://what-if.xkcd.com/111/
https://what-if.xkcd.com/111/

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Relevant Course Information

+» HW 16 due Wednesday (11/5)
+ HW 17 due Friday (11/7)

"= Don’t wait too long, this is a big HW (includes this lecture)

+ Lab 3 due Friday (11/7)

= Late days open until Monday (11/10)
"= Monday is Veteran’s Day
= No lecture, but some office hours (see Ed)

+» Midterm grades will be released when we can
= Regrade requests will be available afterward

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (1/2)

+ Blocks and Addresses
+ Direct-Mapped Caches

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Note: The textbook
uses “B” for block size

Cache Sizes (Review)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+ Cache Size (C): amount of data the $ can store

® Cache can only hold so much data (subset of next level)
" Given in bytes (C) or number of blocks (C/K)
= Example: C = 32 KiB using 6% B blocks means that it can hold 5 512 blocks

'

1o S-
'*Z - Zns x_‘_L’L’.d.s-; Z' ":2 Uod;s

2° 3

YA UNIVERSITY of WASHINGTON L17: Memory & Caches |l CSE351, Autumn 2025

Note: The textbook
uses “B” for block size

Memory and Blocks (Review)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+» The address space is divided into adjacent, numbered blocks

" For address A of width m bits, can determine its block number via |[A/K]|

= Example: Let m =4 bits, K = 4 B 2 A /4, =21
Block O Block 1 f Block 3
Ox0 Ox2 Ox4 OX6 lox OXA OxC OXE
start of Mem — \ % < end of Mem
Ox1 Ox3 Ox5 Ox7 Ox9 OxB OxD OxF

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Note: The textbook
uses “b” for offset bits

Addresses and Blocks (Review)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)
= Blocks consist of adjacent bytes (differ in address by 1) X% 2" = valse of Hhe loast . bifs

- Spatial locality! Ob ... _ — Toad T e
ZZHLZ"?" Z‘L
+» Remaining address bits tell you ordered position of byte within the block
remiinde ¢

= (address) modulo (# of bytes in a block) = 4 % K How many bits do T

=
= Offset field is the low-order(log,(K) = k\bits of address 7 need fo speci®y every
- mod 2™ = n lowest bits brle & o bluck?

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

CSE351, Autumn 2025

Note: The textbook
uses “b” for offset bits

Addresses and Blocks Example

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+» Example:

m

= |f we have 6-bit addresses and block size K = 4 B, which block and byte does 6x19
refer to?
Ox 1 !
A
Jvess: Ob O | @7{)’ i
adlves bisce | offect block numbey & :)g I//////l |
(wlue &) Cualue 1) o o : 00 O1 o ||

ot seb Loigth :WZ(K): pﬂygz('-{):zw-j

L17: Memory & Caches Il CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Note: The textbook
uses “B” for block size

Lab 1a Callback

+» The within_same_block function asks you to determine if the
addresses stored by two pointers lie within the same block of

64-byte aligned memory
= Solution: Right shift by 6 and compare

D 3

EEI_ CT “Blsck 0
23

— S

\ 63 64 e

O: 0L0O,. 0oloos odo

L3 OLO.. OOy 11y Mo g___r %

64: OpO ... O jpoo 020 e A Bed o 0o
22 6Lo... ot vy ack 4

block lluwck
numln'ef. ij’rl:‘;iﬂfl'-._

Lohich '-Jacc,lf—? 4 L herg o Hock 7

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Polling Questions (1/2)

+ We have a cache with the following parameters:
= Block size of 8 bytes K= 2° R

= Cachesizeof4kiB (C=2"B

2 T "(:210

+ How many blocks can the cache hold? C/K-'—Z‘Z'E—'Zt/?/}ua_dd_J
+» How many bits wide is the block offset field? k=@zck)=@

+» Which of the following addresses would fall under block number 37

A. B. Ox1F C. 0x30 D. 0x38
1_3/8_;: @) L%I/ﬁ_, = ._L(K/3_;: G L5é/3J=7—

OL 00 L?éll Ob O__I_Mll bbﬂ_(‘ﬁ_)o oL 11 !/000
block ngm O block num 3 block num 6 ol ock num T

10

YA/ UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (2/2)

+ Blocks and Addresses
+ Direct-Mapped Caches

11

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Block Placement (Review)

+» Where should data go in the cache?

" We need a mapping from memory addresses to specific locations in the cache
to make checking the cache for an address fast

+» What is a data structure that provides fast lookup?
= Hash table!

12

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Hash Tables for Fast Lookup

+ Apply hash function to map data to “buckets”

= Goals: (1) fast/simple calculation 0
(2) use all buckets “well” 1
=2
mod 10 3
Insert: 4
@ 55
D

3@ > 7
162 8

119 ——=9

13

YA UNIVERSITY of WASHINGTON

L17: Memory & Caches Il CSE351, Autumn 2025

Direct-Mapped Address Hashing (Review)

Memory

addresses are 6 bls: Ob XX)(X/XX
Cache b\OCk numMm O.FF.SE,-l-

Block N\ﬁrm Block Data

ool

ococ OV jol 1t

Index Block Data

0001

0010

0011

0100

0101

01j10|

0111

1000

1001

1010

1011

1100

1101

1110

1111

00 | |,
01 I Here K =4 B
10 r 1 1 —andC/K =4
i i i l:locks
e L1 1 _

offser: 00 OL 10 11
LN

+» Map block number to position in cache
= § = C(C/K is number of cache indices

= (block number) mod (# of indices)

" |ndex field is the Iow-order|_lo,g2(5) = s bits|
of the block number '

HDL.J Mr\y bﬂs Ab 1

need To speciL, eveny
Se"’f/'mdex In LN (oldney?

14

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Address Hashing Consequence

Memory Cache

Block Num Block Data Index Block Data
0000 | | ; >00 ; ;
0001 01 I
0010 10 !
0011 11 ;
0100

é—iﬁ; —t— +» Map block number to position in cache

]

I __HereK=4B
[and C/K =4
|

—

6111
1000

= § = (C/K is number of cache indices

= (block number) mod (# of indices) lets

| |
| |
| |
1001 L
|| adjacent blocks fit in cache simultaneously!
]]
| |
| |

l
|
|
}
|
1010 '
1
1
|
I

1011
1100
1101
1110 L1
1122 | 11

- Consecutive blocks go in consecutive cache
indices

15

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Block Placement Example

o E-bit addresses, block size K =4 B, and our cache holds

S =4 blocks.= C/K | s= Lo, (4)=2 bits

+ A request for address Ox2A results in a cache miss. Which index does this
block get loaded into and which 3 other addresses are loaded along with
it?

Ox T A
address Ob__/_m Trde 2 (0 7 Cache: Offset
hAex o‘p'F.re'f' { (IO) WQ(OT) Ol [-LO 1.1.
(olue 2) Cualue 2) 00 (|
01 2% f 24 E 2A | 28
|

) |
along Lth: Ol 1010 0010+ e AN
2 Oxlq 10 [//////

2B 11 { ‘

16

CSE351, Autumn 2025

Addresses
0000 XX
0001 XX
0010 XX
0011 XX
0100 XX
0101 XX
01‘@xx
0111 XX
1000 XX
1001 XX
1010 XX
1011 XX
1100 XX
1101 XX
1110 XX
1111 XX

YA UNIVERSITY of WASHINGTON

Memory
Block Data

L17: Memory & Caches Il

Index

>00
01
10
11

Place Data in Cache by Hashing Address

Cache
Block Data
| | | =
]]]
I - Here K =4 B
I®BL and C/K =4
L1 1 _

« Collision!

" This might confuse the cache later when we
access the data

= Solution?

CSE351, Autumn 2025

17

YA UNIVERSITY of WASHINGTON L17: Memory & Caches |l CSE351, Autumn 2025

Tags Differentiate Blocks in Same Index

Memory Cache
Addresses Block Data Index @ Block Data _
ee0oxx | |, | . 00 || 00 Lo
00 01 XX I 01 I | Here K =48B
o1exx | ' I 1 -10 ||[e1) o and C/K =4
00 11 XX L 11 || o1 L. .
01 00 XX . k/
01 @1 XX U :
S % Tag = reos_}dpﬁﬁegd%%gs bits
priixx [1 1 1 " fhits=NT— S — Ik~
10 00 XX L - ‘—'2_1—9__—-2
1001XX | 1 1 | ® Check this during a cache lookup
1q10XX 1 . . L)
e1axx [1 Analogy: Looking for your friend in a crowded
11e0XX [1 1 1 room, so you yell their first name (index)
11 01 XX ol
1110XX | | 4 | Several people respond “yeah?”, so you get
tlaaxx] 1t 1 1 more specific: first name + last name (tag)

-

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Checking for a Requested Address

+» CPU sends address request for chunk of data
= Address and requested data are not the same thing!

- Analogy: your friend # their phone number

/
+ TIO address breakdown: m-bit address: Tag (1) index (s) | Offset (k)
/)

\
{

Y
Block Number

1) Index field tells you where to look in cache
2) field lets you check that data is the block you want
3) Offset field selects specified start byte within block

" Note: 7 and s sizes will change based on hash function

19

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

CSE351, Autumn 2025

Polling Questions (2/2)

+ Based on the following behavior, which of the following block sizes is
NOT possible for our cache? hit: block wih dddx ol readyin $

= Cache starts empty, also known as a cold cache wiss: ods nstin $, ,o:c\\\s bk corlaining A
vorn Menrm
= Access (addr: hit/miss) stream:

« (OXE: miss), (OxF: hit), (0X10: miss
() (L) (L—?@ (G s)in o d—'"ppe(en',l’ HOCJ‘

)@ 14 :‘TI‘S are inthe same block
O pills blode cortaing M iato $

A.
Ox0 Ox2 Ox4 Ox6 Ox8 OxA OxC OxE Ox10 Ox12
B. 8 bytes
Ox1 0Ox3 Ox5 Ox7 Ox9 OxB OxD OxF Ox11
C. 16 bytes

| D. 32 bytes |

20

YA/ UNIVERSITY of WASHINGTON L17: Memory & Caches II

Polling Questions Solution (2/2)

CSE351, Autumn 2025

+ Based on the following behavior, which of the following block sizes is

NOT possible for our cache?

" Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (OXE: miss), (0xF: hit), (0x10: miss)
« Need OxE and OxF in same block; 0x10 in different block

A.

B. 8 bytes

C. 16 bytes

D. 32 bytes

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Cache Summary

Memory Cache
Addresses Block Data Index Tag Block Data
oofelxx [T T 1 00 [o00 T T
00|01 XX 111 01 11 11| __HereK=4B
00106l XX | | | 10 01 | | | and C/K =4
00/11|XX L 11 | o1 L. .
01|00|XX 1 1 1
01[01|XX L :
oxfropx [% Hash function: (block number) mod
o1f1ipoc [0 1 (# of indices in cache)
10[00|XX L
elealxx 1 1 = Each memory address maps to exactly one
1010XX | | L index in the cache
10(11{ XX
12 oohx T T " Fast and simple to find a block, uses all
1ferxx [- cache indices
11/10{XX U1
11]11{XX 11 1

22

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Cache Problem 2: 0L, Ool\olloo

24: 0b o([Q 00
‘I'a_c, mo\ex O‘F{sef

Memory Cache
Addresses _Block Data Index Tag Block Data
oopexx [, = ° 00 |22 T
00 P1 XX SN 01 2? I Here K =4B
eOpeXx [E 1T lern 10 T —and C/K =4
eom1ixx %, | | 11 |22 i
e1POIXX |1 1 1
e1pijxx |[= ! ! :
oLhex [P et +» What happens if we access the
oLpijxx [1 1 1 fqllowm gresses?
10 PO XX L isy Niss . Mis
10 §1 XX T = 8 24,8, 24,8, ..7
Lopepx { L | = Conflict in cache (misses!)
opmixx | |,
11eoxx | 1 1 1 = Rest of cache goes unused
11 P1[XX L _ |
1pelkx [4 1 4 + Solution? Next lecture!

11A1XX 11

23

YA/ UNIVERSITY of WASHINGTON L17: Memory & Caches II

CSE351, Autumn 2025

Homework Setup (1/2) J g a(ric] = bogent (6*R1C) ool Gtnd L)

K struct WolfPos { » What are the addresses of the
| :}oa: X 3 a%T:f LJol\'f‘Po.s'.l Y following pieces of data? _
4 oat vy; X | Y € |1 - : : - =
q float z; et 0 4 & 12 &(gr'|7c\l [0] [@]de) =12 - O*EI
4 int 'Id; o o’ﬂ:l(j:'”_
b Koax =4 |
struct WolfPos grid[16][16]; = &(grid[1][0].y) = (260'-' 0,110;]
. Assﬁ’r%e&grid =0 9 0 \ /A T i |
o oo ~C 4 =25 sef =
C &5 woo-~majr. 16 Colunns (Imgro) * 16 =25¢ oM L
o - = " &(grid[3][4] /.\x) :lé’_-LL=O><SHOj
EEVED (ER) . . (ST j\ C Hoeb= O
o> G*lo+4)*6= 832
52

Ox34

24

YA UNIVERSITY of WASHINGTON L17: Memory & Caches | CSE351, Autumn 2025

S = C/K = co.wae Lol(k 6‘-! u*’dl)

Homework Setup (2/2
P (2/2) 5= Joy, (C/E) = 6 L
struct WolfPos { » Cold direct-mapped cache with
:}oat X3 C = 10?_%4 Band K = 12_9 B=2 k= 4L
oat y; = What happens if we access
float z; .
e i g 1d[0](0] . xond then
). ? grid[4][0].X?

struct WolfPos grid[16][16];
" Assume &grid = 0

& gri‘c\[o]{b]-)(— OxO = Ob 041) 0(_)00) OO0 0O f}ii_s in Ihdex O = loa:)\ Had u\/’“1 "aj D
17‘3 index gthet

bgﬁa\(q](o]_x-: Ox400 = Ob O llOD 000 \ODDD Miss 1n index O =D Lk act blodk wih Fuy O

T ——

(lea+0)™le (oad block A tog 1

25

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II CSE351, Autumn 2025

Summary (1/2)

+ Cache parameters define the cache geometry:

= Block size is number of bytes per block

= Cache size is number of bytes (or blocks) of data the cache can hold
+ Finding a byte in the cache:

= Offset refer to which byte in block

= Index refers to which block in cache

» Example:
Ob0o0o block size

= K=4B,C =16 B=4 blocks

OboO1
Obl0

Ob1l1 _) cache size
Offset: ObOO ObO1 Ob10 Ob1l1l

26

YA UNIVERSITY of WASHINGTON

L17: Memory & Caches Il

CSE351, Autumn 2025

Summary (2/2)

+ Direct-mapped cache: each block in cache is assigned a unique index
= Uses hash function of (block number) mod (# of cache indices)

- Deterministic placement of each block, with many blocks mapping into the same index
- Tag bits stored in cache and used to distinguish between blocks that map to same index

4

+ Accessing the cache: m-bit address: Tag () index (s) | Offset (k)
(TIO address breakdown) | .

Block I{Iumber
1) Index field tells you where to look in cache (width s = log, S)

2) field lets you check that data is the block you want (widtht = m — s — k)
3) Offset field selects specified start byte within block (width k = log, K)

27

	Slide 1: The Hardware/Software Interface Memory & Caches II
	Slide 2: Relevant Course Information
	Slide 4: Lecture Outline (1/2)
	Slide 5: Cache Sizes (Review)
	Slide 6: Memory and Blocks (Review)
	Slide 7: Addresses and Blocks (Review)
	Slide 8: Addresses and Blocks Example
	Slide 9: Lab 1a Callback
	Slide 10: Polling Questions (1/2)
	Slide 11: Lecture Outline (2/2)
	Slide 12: Block Placement (Review)
	Slide 13: Hash Tables for Fast Lookup
	Slide 14: Direct-Mapped Address Hashing (Review)
	Slide 15: Direct-Mapped Address Hashing Consequence
	Slide 16: Block Placement Example
	Slide 17: Place Data in Cache by Hashing Address
	Slide 18: Tags Differentiate Blocks in Same Index
	Slide 19: Checking for a Requested Address
	Slide 20: Polling Questions (2/2)
	Slide 21: Polling Questions Solution (2/2)
	Slide 22: Direct-Mapped Cache Summary
	Slide 23: Direct-Mapped Cache Problem
	Slide 24: Homework Setup (1/2)
	Slide 25: Homework Setup (2/2)
	Slide 26: Summary (1/2)
	Slide 27: Summary (2/2)

