YA UNIVERSITY of WASHINGTON L17: Memory & Caches II CSE351, Autumn 2025

The Hardware/Software Interface

Memory & Caches Il
T'M SORRY, LJE (CANT APPROVE
Instructors: THIS PERMIT YOUR mmNSéEMT
: : ZONED FOR GIANT-MONEY-BIN
Amber Hu, Justin Hsia mmsmmm
S0, 100 R

Teaching Assistants:
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan

Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/
https://what-if.xkcd.com/111/
https://what-if.xkcd.com/111/

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Relevant Course Information

+» HW 16 due Wednesday (11/5)
+ HW 17 due Friday (11/7)

"= Don’t wait too long, this is a big HW (includes this lecture)

+ Lab 3 due Friday (11/7)

= Late days open until Monday (11/10)
"= Monday is Veteran’s Day
= No lecture, but some office hours (see Ed)

+» Midterm grades will be released when we can
= Regrade requests will be available afterward

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (1/2)

+ Blocks and Addresses
+ Direct-Mapped Caches

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Note: The textbook
uses “B” for block size

Cache Sizes (Review)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+ Cache Size (C): amount of data the $ can store

® Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C /K)
= Example: C =32 KiB using 64-B blocks means that it can hold blocks

YA UNIVERSITY of WASHINGTON L17: Memory & Caches |l CSE351, Autumn 2025

Note: The textbook
uses “B” for block size

Memory and Blocks (Review)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+» The address space is divided into adjacent, numbered blocks

" For address A of width m bits, can determine its block number via |[A/K]|
= Example: Let m =4 bits, K = 4B

Block O Block 1 Block 3
Ox0 0x2 Ox4 0Ox6 lox8 OxA 0xC OxE

start of Mem — <« end of Mem
Ox1 Ox3 Ox5 OXT Ox9 OxB OxD OxF

YA UNIVERSITY of WASHINGTON

L17: Memory & Caches Il

Addresses and Blocks (Review)

+ Block Size (K): unit of transfer between $ and Mem

" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)

- Spatial locality!

CSE351, Autumn 2025

|

Note: The textbook
uses “b” for offset bits

|

+» Remaining address bits tell you ordered position of byte within the block

= (address) modulo (# of bytes in a block) = A % K

= Offset field is the low-order log, (K) = k bits of address

- mod 2™ = n lowest bits

m — k bits

k bits

m-bit address:

Block Number

Block Offset

(refers to byte in memory)

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

CSE351, Autumn 2025

Note: The textbook
uses “b” for offset bits

Addresses and Blocks Example

|

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+» Example:

= |f we have 6-bit addresses and block size K = 4 B, which block and byte does ©x19
refer to?

L17: Memory & Caches Il CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Note: The textbook
uses “B” for block size

Lab 1a Callback

+» The within_same_block function asks you to determine if the
addresses stored by two pointers lie within the same block of

64-byte aligned memory
= Solution: Right shift by 6 and compare

D 3

EEI_ CT “Blsck 0
23

— S

\ 63 64 e

O: 0L0O,. 0oloos odo

L3 OLO.. OOy 11y Mo g___r %

64: OpO ... O jpoo 020 e A Bed o 0o
22 6Lo... ot vy ack 4

block lluwck
numln'ef. ij’rl:‘;iﬂfl'-._

Lohich '-Jacc,lf—? 4 L herg o Hock 7

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Polling Questions (1/2)

+ We have a cache with the following parameters:

= Block size of 8 bytes
" Cache size of 4 KiB

+» How many blocks can the cache hold?

+» How many bits wide is the block offset field?

+» Which of the following addresses would fall under block number 37
A. B. Ox1F C. 0x30 D. 0x38

10

YA/ UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (2/2)

+ Blocks and Addresses
+ Direct-Mapped Caches

11

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Block Placement (Review)

+» Where should data go in the cache?

" We need a mapping from memory addresses to specific locations in the cache
to make checking the cache for an address fast

+» What is a data structure that provides fast lookup?
= Hash table!

12

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Hash Tables for Fast Lookup

+ Apply hash function to map data to “buckets”

= Goals: (1) fast/simple calculation
(2) use all buckets “well”

©

Insert:

27
34
102
119

Ul
O© 0o N O U1 A WIN K

13

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Address Hashing (Review)

Memory Cache

Block Num Block Data Index Block Data
0000 | | ; >00 ; ;
0001 01 I
0010 10 !
0011 11 ;
0100
0101
0110 i
0111 |
1000 :
1001 l

1010 |

:
|
|

]

I __HereK=4B
[and C/K =4
|

—

+» Map block number to position in cache

= § = C(C/K is number of cache indices

= (block number) mod (# of indices)

" |ndex field is the low-order log,(S) = s bits
of the block number

1011
1100
1101
1110 L1
1122 | 11

14

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Address Hashing Consequence

Memory Cache

Block Num Block Data Index Block Data
0000 | | ; >00 ; ;
0001 01 |
0010 10 !
0011 11 ;
0100
o101 | I T 1 L :
o110 [T +» Map block number to position in cache
0111 | I
1000 :
1001 i

1010 '

:
I
|

]

I __HereK=4B
[and C/K =4
|

—

= § = (C/K is number of cache indices

= (block number) mod (# of indices) lets
adjacent blocks fit in cache simultaneously!

- Consecutive blocks go in consecutive cache
indices

1011
1100
1101
1110 L1
1122 | 11

15

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Block Placement Example

+ 6-bit addresses, block size K =4 B, and our cache holds
S =4 blocks.

+ A request for address Ox2A results in a cache miss. Which index does this

block get loaded into and which 3 other addresses are loaded along with
it?

Cache:

16

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Place Data in Cache by Hashing Address

Memory Cache

Addresses Block Data Index Block Data
eee0 xx | ; >00 ; ;
0001 XX 01 I
0010 XX 10 !
|
I

]

I __HereK=4B
[and C/K =4
|

0011 XX 11
0100 XX
0101 XX
0110 XX
0111 XX
1000 XX
1001 XX
1010 XX
1011 XX
1100 XX
1101 XX
1110 XX
1111 XX

« Collision!

" This might confuse the cache later when we
access the data

= Solution?

17

YA UNIVERSITY of WASHINGTON L17: Memory & Caches |l CSE351, Autumn 2025

Tags Differentiate Blocks in Same Index

Memory Cache
Addresses Block Data Index Tag Block Data
eocoxx [I T ! 00 |00 T T
00 01 XX T 01 I | Here K =48B
o1exx | ' I 1 10 |oe1 o and C/K =4
00 11 XX L 11 | o1 L. .
0100 XX I I
01 @1 XX U :
e ——— +» Tag = rest of address bits
oLiLXC Y L L " tbits=m—s—k
10 00 XX e
1001XX | 1 1 = Check this during a cache lookup
10 10 XX . e . _ _)
011xx [1 Analogy: Looking for your friend in a crowded
11e0XX | 1 1 1 room, so you yell their first name (index)
11 01 XX -
1110XX | | 4 | Several people respond “yeah?”, so you get
tlaaxx] 1t 1 1 more specific: first name + last name (tag)

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

Checking for a Requested Address

+» CPU sends address request for chunk of data
= Address and requested data are not the same thing!

- Analogy: your friend # their phone number

« T10 address breakdown: m-bit address: Tag (1) Index (s) | Offset (k)

\ J
Y
Block Number

1) Index field tells you where to look in cache
2) field lets you check that data is the block you want
3) Offset field selects specified start byte within block

" Note: 7 and s sizes will change based on hash function

19

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II

CSE351, Autumn 2025

Polling Questions (2/2)

+ Based on the following behavior, which of the following block sizes is
NOT possible for our cache?
" Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (OXE: miss), (0xF: hit), (0x10: miss)

A.
Ox0 Ox2 Ox4 Ox6 Ox8 OxA OxC OxE Ox10 Ox12
B. 8 bytes
Ox1 0Ox3 Ox5 Ox7 Ox9 OxB OxD OxF Ox11
C. 16 bytes

D. 32 bytes

20

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Cache Summary

Memory Cache
Addresses Block Data Index Tag Block Data
oofelxx [T T 1 00 [o00 T T
00|01 XX 111 01 11 11| __HereK=4B
00106l XX | | | 10 01 | | | and C/K =4
00/11|XX L 11 | o1 L. .
01|00|XX 1 1 1
01[01|XX L :
oxfropx [% Hash function: (block number) mod
o1f1ipoc [0 1 (# of indices in cache)
10[00|XX L
elealxx 1 1 = Each memory address maps to exactly one
1010XX | | L index in the cache
10(11{ XX
12 oohx T T " Fast and simple to find a block, uses all
1ferxx [- cache indices
11/10{XX U1
11]11{XX 11 1

22

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Direct-Mapped Cache Problem

Memory Cache
Addresses Block Data Index Tag Block Data
eopolxx [T T ! o0 [22 T
00 P1|XX 111 01 22 11| Here K=4B
eopefxx [T T | 10 1 1 | [[andC/K=4
00 L1 [XX L 11 |22 L. .
01 PO XX 1 1 1
01 P1[XX L :
oihohx [+» What happens if we access the
OLAIXX | 1 1 | following addresses?
10 PO|XX L
10 §1 XX T = 8 24,8, 24,8, ..7
1opox f L ¢ = Conflict in cache (misses!)
10 L1 [XX L
11eoxx | 1 1 1 = Rest of cache goes unused
11 P1XX ol _ |
1pelx [+ + Solution? Next lecture!
irpafx [0

23

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II CSE351, Autumn 2025

Homework Setup (1/2)

struct WolfPos { +» What are the addresses of the
float X following pieces of data?
froat) = &(grid[0][0].4d) =
int id;

I

struct WolfPos grid[16][16]; = &(grid[1][0].y) =

" Assume &grid = 0

" &(grid[3][4].x)

24

YA UNIVERSITY of WASHINGTON L17: Memory & Caches I CSE351, Autumn 2025

Homework Setup (2/2)

struct WolfPos { » Cold direct-mapped cache with
float x; C =1024Band K =16B
float vy;

®" What happens if we access
grid[0] [0].x and then
grid[4][0].x?

float z;
int id;

I

struct WolfPos grid[16][16];
" Assume &grid = 0

25

YA UNIVERSITY of WASHINGTON L17: Memory & Caches II CSE351, Autumn 2025

Summary (1/2)

+ Cache parameters define the cache geometry:

= Block size is number of bytes per block

= Cache size is number of bytes (or blocks) of data the cache can hold
+ Finding a byte in the cache:

= Offset refer to which byte in block

= Index refers to which block in cache

» Example:
Ob0o0o block size

= K=4B,C =16 B=4 blocks

OboO1
Obl0

Ob1l1 _) cache size
Offset: ObOO ObO1 Ob10 Ob1l1l

26

YA UNIVERSITY of WASHINGTON

L17: Memory & Caches Il

CSE351, Autumn 2025

Summary (2/2)

+ Direct-mapped cache: each block in cache is assigned a unique index
= Uses hash function of (block number) mod (# of cache indices)

- Deterministic placement of each block, with many blocks mapping into the same index
- Tag bits stored in cache and used to distinguish between blocks that map to same index

4

+ Accessing the cache: m-bit address: Tag () index (s) | Offset (k)
(TIO address breakdown) | .

Block I{Iumber
1) Index field tells you where to look in cache (width s = log, S)

2) field lets you check that data is the block you want (widtht = m — s — k)
3) Offset field selects specified start byte within block (width k = log, K)

27

	Slide 1: The Hardware/Software Interface Memory & Caches II
	Slide 2: Relevant Course Information
	Slide 4: Lecture Outline (1/2)
	Slide 5: Cache Sizes (Review)
	Slide 6: Memory and Blocks (Review)
	Slide 7: Addresses and Blocks (Review)
	Slide 8: Addresses and Blocks Example
	Slide 9: Lab 1a Callback
	Slide 10: Polling Questions (1/2)
	Slide 11: Lecture Outline (2/2)
	Slide 12: Block Placement (Review)
	Slide 13: Hash Tables for Fast Lookup
	Slide 14: Direct-Mapped Address Hashing (Review)
	Slide 15: Direct-Mapped Address Hashing Consequence
	Slide 16: Block Placement Example
	Slide 17: Place Data in Cache by Hashing Address
	Slide 18: Tags Differentiate Blocks in Same Index
	Slide 19: Checking for a Requested Address
	Slide 20: Polling Questions (2/2)
	Slide 22: Direct-Mapped Cache Summary
	Slide 23: Direct-Mapped Cache Problem
	Slide 24: Homework Setup (1/2)
	Slide 25: Homework Setup (2/2)
	Slide 26: Summary (1/2)
	Slide 27: Summary (2/2)

