
CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

The Hardware/Software Interface
Memory & Caches I
The Hardware/Software Interface
Memory & Caches I

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Relevant Course Information

❖ Mid-quarter Survey due tonight

❖ HW14 due tonight, HW15 due Monday, HW16 due Wednesday

❖ Lab 3 due next Friday (11/7)

▪ Lots of resources: HW15, Section 06, GDB Stack Tutorial lesson

❖ Midterm grading is ongoing, will be released when available

▪ Midterm clobber policy allows you to overwrite your midterm score!

▪ Solutions file will be posted, Gradescope rubric items will have more scoring details

2

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

House of Computing Check-In

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes,
Virtual Memory

❖ How do we maintain logical consistency in
the face of more data and more processes?

▪ How do we support data access, including
dynamic requests, across multiple processes?

▪ How do we support control flow both within
many processes and things external to the
computer?

3

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (1/4)

❖ IEC Prefixes

❖ Caches and Cache Mechanics

❖ Cache Performance Metrics

❖ The Memory Hierarchy

4

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Prefixes (Review)

❖ Here focusing on large numbers (exponents > 0)

❖ SI prefixes are ambiguous if base 10 or 2

▪ Note that 103 ≈ 210

❖ IEC prefixes are unambiguously base 2

5

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Large Powers of 2 and Units (Review)

❖ Because IEC prefixes are powers of 210, we can convert any large
power of 2 as follows:

▪ Note that we are only changing the quantity and the units remain the same

❖ Examples:

▪ 232 bits into IEC:

▪ How many address bits to use 13.2 TiB of memory?
6

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

How to Remember?

❖ Will be given to you on Final reference sheet

❖ Mnemonics

▪ There unfortunately isn’t one well-accepted mnemonic
• But that shouldn’t stop you from trying to come with one!

▪ Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

▪ Kirby Missed Ganondorf Terribly, Potentially Exterminating Zelda and Yoshi

▪ xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
• https://xkcd.com/992/

▪ Post your best on Ed Discussion!

7

https://xkcd.com/992/
https://xkcd.com/992/

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Polling Questions (1/2)

❖ Convert the following to or from IEC:

▪ 512 Ki-books

▪ 227 caches

8

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (2/4)

❖ IEC Prefixes

❖ Caches and Cache Mechanics

❖ Cache Performance Metrics

❖ The Memory Hierarchy

9

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

How does execution time grow with SIZE?

10

int array[SIZE];
int sum = 0;

for (int i = 0; i < 200000; i++) {
 for (int j = 0; j < SIZE; j++) {
 sum += array[j];
 }
}

SIZE

Ex
e

cu
ti

o
n

 T
im

e

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Actual Cache Timing Data

11

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Processor-Memory Gap

12

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

CPU

Processor-Memory Bottleneck

13

Main
Memory

Regs

Much slower to access memory

Core 2 Duo:
Can process at least

256 Bytes/cycle

Core 2 Duo:
Bandwidth: 2 Bytes/cycle
Latency: 100-200 cycles

Problem: lots of waiting on memory

Registers are very
fast to access

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

CPU

Processor-Memory Bottleneck Fix

14

Main
Memory

Regs

Much slower to access memory

Core 2 Duo:
Can process at least

256 Bytes/cycle

Core 2 Duo:
Bandwidth: 2 Bytes/cycle
Latency: 100-200 cycles

Problem: lots of waiting on memory
Solution: caches

Cache

Registers are very
fast to access

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Cache

❖ Pronunciation: “cash”

▪ We abbreviate this as “$”

❖ English: A hidden storage space for provisions, weapons, and/or
treasures

❖ Computer: Memory with short access time used for the storage of
frequently or recently used instructions (i-cache/I$) or data (d-cache/D$)

▪ More generally: Used to optimize data transfers between any system elements
with different characteristics (network interface cache, I/O cache, etc.)

15

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

General Cache Mechanics (Review)

16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive memory
• Caches a subset of the blocks

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

General Cache Concepts: Hit (Review)

17

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block 𝒃 is neededRequest: 14

14
Block 𝒃 is in cache:
Hit!

Data is returned to CPU

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

General Cache Concepts: Miss (Review)

18

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block 𝒃 is neededRequest: 12

Block 𝒃 is not in cache:
Miss!

Block 𝒃 is fetched from
memory

Request: 12

12

12

12

Block 𝒃 is stored in cache
• Placement policy: Where should 𝑏 go

if there is room in the cache
•Replacement policy: Which block should
𝑏 replace if the ache is full

Data is returned to CPU

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Why Caches Work: Locality (Review)

❖ Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

19

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Why Caches Work: Temporal Locality (Review)

❖ Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

❖ Temporal locality:

▪ Recently referenced items are likely
to be referenced again in the near future

20

block

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Why Caches Work: Spatial Locality (Review)

❖ Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

❖ Temporal locality:

▪ Recently referenced items are likely
to be referenced again in the near future

❖ Spatial locality:

▪ Items with nearby addresses tend
to be referenced close together in time

❖ How do caches take advantage of this?

21

block

block

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Locality in Practice

❖ Data:

▪ Temporal: sum referenced in each iteration

▪ Spatial: consecutive elements of array a[] accessed

❖ Instructions:

▪ Temporal: cycle through loop repeatedly

▪ Spatial: reference instructions in sequence

22

sum = 0;
for (i = 0; i < n; i++) {
 sum += a[i];
}
return sum;

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Locality Example #1 Code

23

int sum_array_rows(int a[M][N]) {
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];

 return sum;
}

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

int sum_array_rows(int a[M][N]) {
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];

 return sum;
}

Locality Example #1 Access Pattern

24

Access Pattern:
stride = ?

M = 3, N=4

76 92 108

Layout in Memory (arbitrary starting address)

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]

2) a[0][1]

3) a[0][2]

4) a[0][3]

5) a[1][0]

6) a[1][1]

7) a[1][2]

8) a[1][3]

9) a[2][0]

10) a[2][1]

11) a[2][2]

12) a[2][3]

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

int sum_array_cols(int a[M][N]) {
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];

 return sum;
}

Locality Example #2 Access Pattern

25

M = 3, N=4

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]

2) a[1][0]

3) a[2][0]

4) a[0][1]

5) a[1][1]

6) a[2][1]

7) a[0][2]

8) a[1][2]

9) a[2][2]

10) a[0][3]

11) a[1][3]

12) a[2][3]

76 92 108

Layout in Memory (arbitrary starting address)

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (3/4)

❖ IEC Prefixes

❖ Caches and Cache Mechanics

❖ Cache Performance Metrics

❖ The Memory Hierarchy

26

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Cache Performance Parameters (Review)

❖ Huge difference between a cache hit and a cache miss

▪ Could be 100x speed difference between accessing cache and main memory
(measured in clock cycles)

❖ Hit Time (HT)

▪ Time to deliver a block in the cache to the processor
• Includes time to determine whether the block is in the cache

❖ Miss Penalty (MP)

▪ Additional time required because of a miss

❖ Miss Rate (MR)

▪ Fraction of memory references not found in cache (misses / accesses) = 1 - Hit Rate

27

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Cache Performance Measurement (Review)

❖ Average Memory Access Time (AMAT): average time to access
memory considering both hits and misses

 AMAT = Hit time + Miss rate × Miss penalty = HT + MR × MP

▪ HT and MP generally fixed, so minimize MR

❖ Example: Assume HT of 1 clock cycle and MP of 100 clock cycles

▪ 97%: AMAT =

▪ 99%: AMAT =

▪ 99% hit rate twice as good as 97% hit rate!!?!

28

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Polling Questions (2/2)

❖ Processor specs: 200 ps clock, MP of 50 clock cycles, MR of 0.02
misses/instruction, and HT of 1 clock cycle

 AMAT =

❖ Which improvement would be best?

A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

29

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Lecture Outline (4/4)

❖ IEC Prefixes

❖ Caches and Cache Mechanics

❖ Cache Performance Metrics

❖ The Memory Hierarchy

30

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

More than one cache? (Review)

❖ Why would we want to do that?

▪ Avoid going to memory!

❖ Extra considerations for multilevel caching:

▪ Block size may differ between different levels of cache

▪ A memory access can miss in one level and then hit in the next, causing the block to
be copied into the higher level

▪ AMAT, however, is computed for your overall system caching, taking all levels of
cache into account

31

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Memory Hierarchies (Review)

❖ Some fundamental properties of hardware and software systems:

▪ The gaps between memory technology speeds are widening
• True for: registers cache, cache main memory, main memory disk, etc.

▪ Faster storage technologies almost always cost more per byte and have lower
capacity

▪ Well-written programs tend to exhibit good locality

❖ These properties complement each other beautifully and suggest an
approach for organizing memory and storage systems known as a
memory hierarchy

▪ For each level k, the faster, smaller device at level k serves as a cache for the larger,
slower device at level k+1

32

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

An Example Memory Hierarchy (Review)

33

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

An Example Memory Hierarchy: Analogy Revisited

34

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Summary (1/3)

❖ IEC prefixes are unambiguously powers of 2:

35

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Summary (2/3)

❖ Memory Hierarchy

▪ Successively higher levels contain
“most used” data from lower levels

▪ Caches are intermediate storage levels used to
optimize data transfers between any system
elements with different characteristics

▪ Exploits temporal and spatial locality:

36

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10 ms

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

block block

CSE351IntroductionL16: Memory & Caches I CSE351, Autumn 2025

Summary (3/3)

❖ Cache Performance

▪ Ideal case: found in cache (cache hit), return requested data immediately

▪ Bad case: not found in cache (cache miss), search in next level
• Bring entire cache block containing requested data into this cache once found

▪ Average Memory Access Time (AMAT) = HT + MR × MP
• Hurt by Miss Rate and Miss Penalty

37

	Slide 1: The Hardware/Software Interface Memory & Caches I
	Slide 2: Relevant Course Information
	Slide 3: House of Computing Check-In
	Slide 4: Lecture Outline (1/4)
	Slide 5: Prefixes (Review)
	Slide 6: Large Powers of 2 and Units (Review)
	Slide 7: How to Remember?
	Slide 8: Polling Questions (1/2)
	Slide 9: Lecture Outline (2/4)
	Slide 10: How does execution time grow with SIZE?
	Slide 11: Actual Cache Timing Data
	Slide 12: Processor-Memory Gap
	Slide 13: Processor-Memory Bottleneck
	Slide 14: Processor-Memory Bottleneck Fix
	Slide 15: Cache 💰
	Slide 16: General Cache Mechanics (Review)
	Slide 17: General Cache Concepts: Hit (Review)
	Slide 18: General Cache Concepts: Miss (Review)
	Slide 19: Why Caches Work: Locality (Review)
	Slide 20: Why Caches Work: Temporal Locality (Review)
	Slide 21: Why Caches Work: Spatial Locality (Review)
	Slide 22: Locality in Practice
	Slide 23: Locality Example #1 Code
	Slide 24: Locality Example #1 Access Pattern
	Slide 25: Locality Example #2 Access Pattern
	Slide 26: Lecture Outline (3/4)
	Slide 27: Cache Performance Parameters (Review)
	Slide 28: Cache Performance Measurement (Review)
	Slide 29: Polling Questions (2/2)
	Slide 30: Lecture Outline (4/4)
	Slide 31: More than one cache? (Review)
	Slide 32: Memory Hierarchies (Review)
	Slide 33: An Example Memory Hierarchy (Review)
	Slide 34: An Example Memory Hierarchy: Analogy Revisited
	Slide 35: Summary (1/3)
	Slide 36: Summary (2/3)
	Slide 37: Summary (3/3)

