YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

CSE351, Autumn 2025

The Hardware/Software Interface

Buffer Overflow

Instructors:

Amber Hu, Justin Hsia

Teaching Assistants:

Anthony Mangus
Grace Zhou
Jiuyang Lyu

Kurt Gu

Mendel Carroll
Naama Amiel
Rose Maresh
Violet Monserate

Divya Ramu
Jessie Sun
Kanishka Singh
Liander Rainbolt
Ming Yan

Pollux Chen
Soham Bhosale

HEARTBLEED MUST
BE THE WJORST WEB
SECURITY LAPSE EVER.

UORST 50 FAR.
GNVE USTME.

3]

I MEAN, THIS BUG ISNT
Just BROKENI ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE
RANDOM MEMORY CONTENTS,

£

IT'S NOT JUST KEYS.
ITS TRAFAC DATA.
EMAILS. PASHLIORDS.
EROTIC FANFCTION.
15 EVERYTHING
(DNFRO“]}'SED?

WELL, THE ATTACK 15
UMITED 7O DATA SIORED
IN COMPUTER MEMORY.

50 PAPER 15 SAFE.
AND CLAY TRBLETS.

OUR IMAGINATICNS, Too. |
SEE, UELL BE FINE.

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and
it was ... bad. | saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/

http://xkcd.com/1513/

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

Relevant Course Information

+» HW13 due tonight, HW14 due Friday, HW15 due Monday
+» Mid-quarter survey due tomorrow (10/30)

+» Midterm grades to be released next week

= Solutions posted on website soon; rubric and grades will be found on Gradescope
= Regrade requests will be open for a short time after grade release

= Don’t freak out about your grade — a learning opportunity and not a reflection of
you as a person

+ Lab 3 released today, due next Friday (11/7)

= You will have everything you need by the end of this lecture

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Lecture Outline (1/5)

+ Buffer Overflow

+ Vulnerable Code

+ Code Injection Attacks

+ Dealing with Buffer Overflow Attacks
+ Real Life Examples of Buffer Overflow

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

What Is a Buffer?

« A buffer is an array used to temporarily store data

+ You’'ve probably seen buffering symbols for streaming video and games
" The video/game data is being written into a buffer before being shown

Loading

+ Buffers can also store user input for programs...

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

General Memory Layout (Reminder)

not drawn to scale

+ Stack High Address Space:
" Local variables (procedure context) nddresses 4 Stack
«» Heap
= Dynamically allocated as needed
" e.g., new,malloc() Dynamic Data
+ Statically-allocated Data A'\gjrn;sgs bt
= Read/write: global variables (Static Data) Static Data
= Read-only: string literals (Literals)
+» Code/Instructions Literals
= Executable machine instructions (read-only) Instructions
Low

Addresses

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Memory Allocation Example

+» Where does everything go?

char big_array[1L<<24]; /x 16 MB */
int global = 0;
int useless() { return 0; }

int main() {
void *pl, *p2;
int local = 0;
pl = malloc (1L << 28); /* 256 MB */
p2 = malloc(1lL << 8); /* 256 B */
/* Some print statements ... */

CSE351, Autumn 2025

not drawn to scale
Address Space:

Stack

Dynamic Data
(Heap)

Static Data

Literals

Instructions

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

Memory Allocation Example Solution

not drawn to scale

+» Where does everything go? Address Space:

char big_arrayfllL<<24]; /x 16 MB */ Stack

int global-=_0;

int useless() { return 0;-3

Dynamic Data

int main() { (Heap)
void *pl, *p2;
int local = 0;

Static Data
pl = malloc(1L << 28); /* 256 MB */
p2 = malloc(1lL << 8); /* 256 B */
/* Some print statements ... x/ Literals

Instructions

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

x86-64 Stack Frame Structure (Reminder)

+ Each stack frame organized in the same way: (= |
’ | [
1) Return address pushed by call c::z:(s J : :
| J
« The address of the instruction after call Frame | | o
. | argument build |
2) Callee-saved registers X

Only if procedure modifies/uses them return address

: (optional) %6rbp — | callee-saved
3) Local variables

- Unavoidable if variable is too big for a register (e.g., array)

register values

Unavoidable if variable needs an address (i.e., uses &var) local variables
4) Caller-saved registers and padding

Only if values are needed across a procedure call caller-saved
5) Argument build register values

Only if procedure calls a procedure with more than six arguments argument build

%rsp —

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Buffer Overflow in a Nutshell (Review)

+» C does not check array bounds
= Many Unix/Linux/C functions don’t check argument sizes
= Allows overflowing (writing past the end) of buffers (arrays)

+ “Buffer Overflow” = Writing past the end of an array

+ Characteristics of the traditional Linux memory layout provide
opportunities for malicious programs

= Stack grows “backwards” in memory
= Data and instructions both stored in the same memory

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

Buffer Overflow Example (1/3)

+ Stack grows down towards lower addresses

Return
. Address <
+ Buffer grows up towards higher addresses
+ If we write past the end of the array, we
overwrite data on the stack! buf{7]
Enter input: hello
buf{0]

No overflow ©

00

00

00

00

00

40

dd

bf

|\®|

|'L|

I'Ll

lhl

10

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Buffer Overflow Example (2/3)

+ Stack grows down towards lower addresses
+ Buffer grows up towards higher addresses

+ If we write past the end of the array, we
overwrite data on the stack!

Enter input: helloabcdef

Return
Address <

buf[7]

buf[0]

00

00

00

00

00

40

dd

bf

CSE351, Autumn 2025

11

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Buffer Overflow Example (3/3)

+ Stack grows down towards lower addresses
+ Buffer grows up towards higher addresses

+ If we write past the end of the array, we
overwrite data on the stack!

Enter input: helloabcdef

Buffer overflow! ®

Return
Address <

buf[7]

buf[0]

12

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Why is Buffer Overflow a Problem?

+ Buffer overflows on the stack can overwrite “interesting” data

= Attackers just choose the right inputs

+ Simplest form (sometimes called “stack smashing”)

= Unchecked length on string input into bounded array causes overwriting of stack
data

" Try to change the return address of the current procedure

«» Why is this a big deal?
" |t was the #1 technical cause of security vulnerabilities

- #1 overall cause is social engineering or user ignorance

13

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Lecture Outline (2/5)

% Buffer Overflow

< Vulnerable Code

+» Code Injection Attacks

+ Dealing with Buffer Overflow Attacks
+ Real Life Examples of Buffer Overflow

14

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

String Library Code (1/2)

+ Implementation of Unix function gets ()

/* Get string from stdin x/
charx gets(charx dest) {
int c = getchar()‘%§‘““~~~~~~~~~
char*x p = dest; — pointer to start of an array
while (c != EOF & & c != '"\n') {
xp++ = C;
Cc = getch;:Z;?§““--§§§§§§
} ——sSame as:
*p = '"\0'; - -
return dest; *P >
} pP++s

= What could go wrong in this code?

15

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

String Library Code (2/2)

+ Implementation of Unix function gets ()

/* Get string from stdin x/

charx gets(charx dest) {
int ¢ = getchar();
charx p = dest;

while (c != EOF & & c != '"\n') {
xp++ = C;
c = getchar();

}

xp = '\@';

return dest;

}
= No way to specify limit on number of characters to read

» Similar problems with other Unix functions:

= strcpy copies string of arbitrary length to a destination
= scanf, fscanf, sscanf, when given %s specifier

CSE351, Autumn 2025

16

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

Vulnerable Buffer Code Demonstration

}

/* Echo Line */

void echo() {
char buf[16]; // Way too small!
gets(buf);
puts (buf) ;

echo();

}

void call_echo() {

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

unix> ./buf-nsp
Enter string: 123456789012345
Segmentation fault (core dumped)

CSE351, Autumn 2025

17

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

Buffer Overflow Disassembly (buf—-nsp)

echo:

call_echo:

0000000000401146 <echo>:

401146: 53 push %rbx
401147: 48 83 ec 20 sub SOx10,%rsp
40114b: 48 89 eT7 mov %rsp,%rdi
40114e: e8 fd fe ff ff call 401050 <gets@plt>
401153: 48 89 eT7 mov %rsp,%rdi
401156: e8 d5 fe ff ff call 401030 <puts@plt>
40115b: 48 83 c4 20 add $0Xx10,%rsp
40115°: 5b pop %rbx
401160: c3 ret

O000000000401177 <call_echo>:
401177: 48 83 ec 08 sub SOx8,%rsp
40117b: b8 00 600 00 00 mov SOx0,%eax
401180: e8 cl ff ff ff callg 401146 <echo>
401185: 48 83 c4 08 add SOx8,%rsp
401189:\c3 retq

N return address

CSE351, Autumn 2025

18

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Buffer Overflow Demo Stack

Before call to gets

/* Echo Line %/
Stack frame for void echo()

call_echo {
char buf[l6]; // Way too small!

gets(buf) ;

Return address puts (buf);
(8 bytes) }
Saved %rbx echo:
(8 bytes) pushq %rbx

subg $16, %rsp
movq %rsp, %rdi

[11]|[10]] [9] | [8] call gets
buf

[15]|[14]|[13]|[12]

(71| [61 | [5] | [4]

(31| [2] | [1] | [e]

—%rsp
\ Note: addresses increasing right-to-left, bottom-to-top

19

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

Buffer Overflow Demo Setup

Before call to gets

void echo() echo:
Stack frame for { pushq %rbx
call_echo char buf[8]; subq $16, %rsp
- gets(buf); movq %rsp, %rdi
. call gets
00 |00 |00 |00 1

00|40 (11 |6f

call_echo:

Saved %rbx

(8 bytes) °© 0 o
40116a: callq 401146 <echo>

sl bl el 40116f: add $0x8,%rsp
[111{[10]| [9] | [8] | puf

(71| [61 | [5] | [4]

(31| [2] | [1] | [e]

—%rsp

20

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

Buffer Overflow Demo Input #1: 24 bytes

After call to gets

Stack frame for
call _echo

00

00

00

00

00

40

11

6f

00

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

Note: Digit “N” is /

just Ox3N in ASCII!

void echo() echo:
{ pushqg %rbx
char buf[8]; subq $16, %rsp
gets(buf) ; movq %rsp, %rdi
. . . call gets
}
call_echo:
40116a: callq 401146 <echo>
40116f: add SOX8,%rsp
buf
—%rsp

unix> ./buf-nsp

Enter string: 12345678901234567890123
12345678901234567890123

Overflowed buffer, but did not corrupt state

CSE351, Autumn 2025

21

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

CSE351, Autumn 2025

Buffer Overflow Demo Input #2: 1234567890123456

After call to gets

Stack frame for
call _echo

00

00

00

00

00

40

11

00

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

void echo() echo:
{ pushqg %rbx
char buf[8]; subq $16, %rsp
gets(buf) ; movq %rsp, %rdi
. . . call gets
}
call_echo:
40116a: callq 401146 <echo>
40116f: add SOX8,%rsp
buf
—%rsp

unix> ./buf-nsp
Enter string: 12345678901234567890123

Overflowed buffer and corrupted return pointer

22

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

CSE351, Autumn 2025

Buffer Overflow Demo Input #2 Explained

After return from echo

Stack frame for
call _echo

00

00

00

00

00

40

11

00

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

«—%rsp

buf

00000000004010d0 <register_tm_clones>:

4010d0: lea Ox2f61(%rip) ,%rdi
4010d7: lea Ox2f5a(%rip) ,%rsi
4010de: sub %rdi,%rsi

4010el: mov %rsi,%rax

4010e4: shr SOx3f,%rsi
4010e8: sar SOx3,%rax

4010ec: add %rax,%rsi

4010ef: sar %rsi

4010f2: je 401108

4010f4: mov Ox2efd (%rip) ,%rax
4010fb: test %rax,%rax

4010fe: je 401108

401100: Jjmpq *x%rax

401102: nopw Ox0 (%rax,%rax,1)
401108: retq

“Returns” to a valid instruction, but bad indirect jump
so program signals SIGSEGV, Segmentation fault

23

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Polling Question

%+ smash_me is vulnerable to stack smashing!

+» What is the minimum number of characters that gets must read in
order for us to change the return address to a stack address?

" For example: (Ox 00 00 7f ff ca fe f0 0d)
— e —

*Mways 07 6 btes T Aotn
96*'"‘0 ret sdbr

—_—N

Previous G,Hbyfe) (6 +6
stack frame 2 W"

= smash_me: (overtoite
00 | 00 [0 subq $®X40/Sp <. B. 30
. ATe X
0|26 05 ox - C. 51

leaq 16(%rsp), %rdi

iy UL eets 'D. 54 |
o E. We're lost...

g

—

24

YA/ UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Lecture Outline (3/5)

% Buffer Overflow

% Vulnerable Code

+» Code Injection Attacks

+ Dealing with Buffer Overflow Attacks
+ Real Life Examples of Buffer Overflow

25

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

Code Injection Attacks (Review)

« Malicious use of buffer overflow!

void foo(){

— return address A

gets(buf) ;

return ..

}

bar () ;
A:... —
}
int bar () {

char buf[64];

*

CSE351, Autumn 2025

Stack after call to gets ()

data written <
by gets ()

buf starts here—> B —>

\

" |nput string contains byte representation of executable code

= Qverwrite return address A with address of buffer B

= When bar () executes ret, will jump to exploit code

High Addresses

KB

pad

exploit code

Low Addresses

\

AN

>

foo
stack frame

bar
stack frame

26

YA/ UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Lecture Outline (4/5)

% Buffer Overflow

% Vulnerable Code

% Code Injection Attacks

+» Dealing with Buffer Overflow Attacks
+ Real Life Examples of Buffer Overflow

27

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

1) Avoid Overflow Vulnerabilities in Code — Functions

/* Echo Line */

void echo()

{
char buf[8]; /*x Way too small! */
fgets(buf, 8, stdin);
puts (buf) ;

}

+ Use library routines that limit string lengths
" fgetsinstead of gets (2"? argument to fgets sets limit)
= strncpy instead of strcpy

" Don’t use scanf with %s conversion specification
- Use fgets toread the string
« Oruse %<n>s where <n> is a suitable integer (e.g., %10s)

CSE351, Autumn 2025

28

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

1) Avoid Overflow Vulnerabilities in Code — Language

+ Avoid C — use a language that checks array index bounds

= Java (“high-level”): buffer overflow impossible because of
ArrayIndexOutOfBoundsException

= Rust (“low-level”): designed with safety and concurrency in mind

+ If you need to use C to manually manipulate memory (e.g.,
microprocessors or embedded systems), critical systems often have other

methods of formally verifying program behavior

29

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

CSE351, Autumn 2025

2) Stack Canaries

+ |dea: place special value (“canary”) on stack just
beyond the buffer

= Secret value that is randomized before main () executes

and placed between the buffer and the stack frame’s
return address

https://archive-
= Check for corruption before exiting function! share.america.gov/english-idiom-

canary-coal-mine/index.html

+» GCC implementation uses —fstack-protector
compiler flag

unix>. /buf unix> ./buf

Enter string: 1234567890123456

Enter string: 123456789012345
12345678

xx*x stack smashing detected xxx

30

https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html
https://archive-share.america.gov/english-idiom-canary-coal-mine/index.html

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

CSE351, Autumn 2025

material

This is extra

Stack Canaries: Protected Buffer Disassembly (bu)| (non-testable)

echo:
401156: push %rbx
401157: sub $Ox10,%rsp
40115b: mov SOx28,%ebx
401160: mov %fs: (%rbx) ,%rax
401164: mov %rax,0x8(%rsp)
401169: xor %eax,%eax

e call printf ...

40117d: callg 401060 <gets@Eplt>
401182: mov %rsp,%rdi
401185: callg 401030 <puts@plt>
40118a: mov Ox8 (%rsp) ,%rax
40118f: xor %fs: (%rbx) ,%rax
401193: jne 40119b <echo+0x45>
401195: add $Ox10,%rsp
401199: pop %rbx
40119a: retq
40119b: callg 401040 <__stack_chk_fail@plt>

31

YA UNIVERSITY of WASHINGTON

Setting Up Canary

Before call to gets

Stack frame for
call _echo

Return address
(8 bytes)

Canary
(8 bytes)

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[O]

buf «<—%rsp

L15: Buffer Overflow

/* Echo Line */
void echo()

{
char buf[8]; /* Way too small! x/
gets(buf) ;
puts (buf) ;
}
i Segment register stores canary)
echo: (don’t worry about why)

CSE351, Autumn 2025

This is extra

(non-testable)

material

J

movq %fs:40, %rax
movq %rax, 8(%rsp)
xorl %eax, %eax

Get canary
Place on stack
Erase canary

32

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

Checking Canary

After call to gets

Stack frame for
call _echo

Return address
(8 bytes)

Canary
(8 bytes)

Q0|37 |36

35

34133 |32

31

buf «<—%rsp

/* Echo Line */
void echo()

CSE351, Autumn 2025

This is extra
(non-testable)

material

{
char buf[8]; /* Way too small! x/
gets(buf) ;
puts (buf) ;

}

echo:

movq 8(%rsp), %rax
xorq %fs:40, %rax
jne .L4

.L4: call _ stack_chk_fail

retrieve from Stack
compare to canary

1f not same,

FAIL

Input: 1234567

33

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

3) System-Level Protections: Non-executable Memory

Stack after call

+ X86-64 added explicit “execute” memory to gets ()
permission]
0]e)
= Stack, Static Data, and Heap segments marked as >]§:§ﬂ<e
non-executable so you cannot execute code from J
these regions ar)
= Hardware support needed to make this possible _
data written < pad > bar
. . by gets () stack
+» Unfortunately, not always available — frame
exploi
= e.g., embedded devices like cars, smart homes B | code)
,?
+ Can’t stop more sophisticated attacks

= e.g., return-oriented programming, return to libc

attack, JIT-spray attack Any attempt to execute

this code will fail
34

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

3) System-Level Protections: Randomized Stack Offsets

+ At start of program, allocate a random amount of
space on Stack

= Repositions stack (and stack addresses) each time the
program executes

= Makes it difficult for hacker to predict location of
injected code

+» Example: Execute code on Slide 6 three times

= Address of variable Local:
- Ox7ffd19d3f8ac
- Ox7ffe8a462c2c
- Ox7ffe927c905c

High Addresses

Random <

allocation

main’s
stack frame

Other
functions’
stack frames

B?

pad

B? —

exploit
code

Low Addresses

35

YA/ UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Lecture Outline (5/5)

% Buffer Overflow

% Vulnerable Code

% Code Injection Attacks

+» Dealing with Buffer Overflow Attacks
+ Real Life Examples of Buffer Overflow

36

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Exploits Based on Buffer Overflows

» /\ Buffer overflow bugs can allow attackers to execute arbitrary code on
victim machines E@

" Most commonly executing a “root shell” — terminal with elevated privileges

+ Distressingly common in real programs

= QOriginal “Internet worm” (1988)
" Heartbleed (2014) & Cloudbleed (2017)
= Hacking embedded devices (e.g., cars, smart home devices, Internet of Things)

37

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

The Morris Worm (1988)

>

L)

» Early versions of the finger server (fingerd) used gets to read the
argument sent by the client

= e.g., finger droh@cs.cmu.edu

>

+» The Morris Worm attacked fingerd server with phony argument:
= finger "exploit-code padding new-return-addr"

= Exploit code executed a root shell on the victim machine, then scanned for other
machines to attack

+ Fallout/legacy (1989 article)

" |nvaded ~6000 computers in hours (10% of the Internet)
" The author, Robert Morris, was prosecuted

- First conviction under 1986 Computer Fraud and Abuse Act

4

- Now an MIT professor

https://linux.die.net/man/8/fingerd
https://dl.acm.org/doi/10.1145/66093.66095
https://en.wikipedia.org/wiki/Robert_Tappan_Morris

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Heartbleed (2014 - 1/3)
HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "POTRTO" (6 LETTERS). O e s Coaa.

o
O

'o
ser Meg wants these 6 letters: POTATO.

39

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Heartbleed (2014 - 2/3)

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

Hm...

40

YA UNIVERSITY of WASHINGTON

L15: Buffer Overflow

Heartbleed (2014 — 3/3)

SERVER, ARE YOU STiLL THERE?
IFS0,REPLY "HAT™ (500 LETTERS).

/

User Meg wants these 500 letters: HAT.

pv HAT. Lucas requests the "missed conne

ctions" page. Eve (administrator) wan
ts to set server’s master key to "148
35038534". Isabel wants pages about "
snakes but not too long". User Karen
wants to"change account password to "

ser Meg wants these 500 letters: HAT. |

CSE351, Autumn 2025

41

YA/ UNIVERSITY of WASHINGTON

Heartbleed Details

+ Buffer over-read in OpenSSL
" Open source security library
" Bugin a small range of versions

L15: Buffer Overflow

+» “Heartbeat” packet: message & length
= Server echoes back data to match length

= Allowed attackers to read contents of memory

s ~17% of Internet affected

" e.g., Github, Yahoo, Stack Overflow,

Amazon Web Services

CSE351, Autumn 2025

@ Heartbeat - Normal usage

Server, send me | <

this 4 letter word erver

if you are there: . |

H LT b|rd
Client bird

W Heartbeat — Malicious usage

Server,send me | Server
this 500-letter bird. Server
word if vau are master key is
. there:("bird 31431498531054.
Client @ User Carol wants (

to change
password to
"password 123"...

42

YA/ UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Hacking Cars (2010)

+» UW CSE research demonstrated wirelessly hacking a car using buffer
overflow

= http://www.autosec.org/pubs/cars-oakland2010.pdf

+ Overwrote the onboard control system’s code
= Disable brakes, unlock doors, turn engine on/off

43

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf

YA/ UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

Hacking DNA Sequencing Tech (2017)

+» UW CSE project: Computer Security and Privacy in DNA Sequencing
Ney et al. (2017): https://dnasec.cs.washington.edu/

= Potential for malicious code to be encoded in DNA!

= Attacker can gain control of DNA sequencing machine when malicious DNA is read

‘ J Jat TN Ta

. L __YAP Y, \
120 130
GAT AAATCTGGTCTTATTTCC

-

44

https://en.wikipedia.org/wiki/DNA_sequencing
https://dnasec.cs.washington.edu/

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Think this is cool?

+ Take CSE 484 (Security)

= Several different kinds of buffer overflow exploits
" Many ways to counter them

+ Nintendo fun!
= Using glitches to rewrite code: https://www.youtube.com/watch?v=TgK-2jUQBUY
" Flappy Bird in Mario: https://www.youtube.com/watch?v=hB6eY73sLV0

45

https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV0

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow CSE351, Autumn 2025

Higher Addresses

Summary (1/3) -
00

+ A buffer is an array that holds temporary data 00
. . Return 00

(e.g., user/file/network input) e ~

+ Buffer overflow is writing past the end of the buffer T
= Common in C/Unix/Linux due to lack of bounds checking 'e!

= Vulnerable functions include gets, strcpy, scanf, ~'d
fscanf, sscanf buf[7] c’

A |b|

lal

+ Buffer overflow exploit: stack smashing o
= QOverflow local array to alter stack contents '

" Commonly used to alter procedure return address U
|e|

buf[0] "h'

Lower Addresses

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

Summary (2/3)
. Higher Addresses
+ A buffer is an array that holds temporary data \
(e.g., user/file/network input) Ef;'ffs
+ Buffer overflow is writing past the end of the buffer) frame
= Common in C/Unix/Linux due to lack of bounds checking &buf[0] A
" Vulnerable functions include gets, strcpy, scanf, y callee's
fscanf, sscanf > > stack
frame
. oo . exploit code
+ Buffer overflow exploit: code injection &bUF[OF—s y
1) Put exploit/machine code in buffer
2) Pad to reach stack frame’s return address Lower Addresses

3) Replace return address with address of the buffer

47

YA UNIVERSITY of WASHINGTON L15: Buffer Overflow

CSE351, Autumn 2025

Summary (3/3)

Higher Addresses

+ Dealing with buffer overflow attacks)
= Use array bounds checking Randorm
- Manually (i.e., implement yourself) or allocation
automatically (e.g., use safe functions or non-C language) .
= Add a stack canary after the buffer Sta"‘ciigfne
- Secret value (changes on each execution) that shouldn’t change :
= Randomized stack offsets Ot?rzrnf:_:Ck
- Makes finding the address of exploit code more difficult :
= Non-executable memory regions (e.g., the stack) return addr
- Prevent exploit code from being placed and executed there canary
buffer
&buf[OP >

Lower Addresses

48

	Slide 1: The Hardware/Software Interface Buffer Overflow
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline (1/5)
	Slide 4: What Is a Buffer?
	Slide 5: General Memory Layout (Reminder)
	Slide 6: Memory Allocation Example
	Slide 7: Memory Allocation Example Solution
	Slide 8: x86-64 Stack Frame Structure (Reminder)
	Slide 9: Buffer Overflow in a Nutshell (Review)
	Slide 10: Buffer Overflow Example (1/3)
	Slide 11: Buffer Overflow Example (2/3)
	Slide 12: Buffer Overflow Example (3/3)
	Slide 13: Why is Buffer Overflow a Problem?
	Slide 14: Lecture Outline (2/5)
	Slide 15: String Library Code (1/2)
	Slide 16: String Library Code (2/2)
	Slide 17: Vulnerable Buffer Code Demonstration
	Slide 18: Buffer Overflow Disassembly (buf-nsp)
	Slide 19: Buffer Overflow Demo Stack
	Slide 20: Buffer Overflow Demo Setup
	Slide 21: Buffer Overflow Demo Input #1: 24 bytes
	Slide 22: Buffer Overflow Demo Input #2: 1234567890123456
	Slide 23: Buffer Overflow Demo Input #2 Explained
	Slide 24: Polling Question
	Slide 25: Lecture Outline (3/5)
	Slide 26: Code Injection Attacks (Review)
	Slide 27: Lecture Outline (4/5)
	Slide 28: 1) Avoid Overflow Vulnerabilities in Code – Functions
	Slide 29: 1) Avoid Overflow Vulnerabilities in Code – Language
	Slide 30: 2) Stack Canaries
	Slide 31: Stack Canaries: Protected Buffer Disassembly (buf)
	Slide 32: Setting Up Canary
	Slide 33: Checking Canary
	Slide 34: 3) System-Level Protections: Non-executable Memory
	Slide 35: 3) System-Level Protections: Randomized Stack Offsets
	Slide 36: Lecture Outline (5/5)
	Slide 37: Exploits Based on Buffer Overflows
	Slide 38: The Morris Worm (1988)
	Slide 39: Heartbleed (2014 – 1/3)
	Slide 40: Heartbleed (2014 – 2/3)
	Slide 41: Heartbleed (2014 – 3/3)
	Slide 42: Heartbleed Details
	Slide 43: Hacking Cars (2010)
	Slide 44: Hacking DNA Sequencing Tech (2017)
	Slide 45: Think this is cool?
	Slide 46: Summary (1/3)
	Slide 47: Summary (2/3)
	Slide 48: Summary (3/3)

