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CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Relevant Course Information

❖ Lab 2 due tonight

❖ Lab 3 released next Wednesday (10/29)

▪ A shorter lab, due Friday, 11/7

❖ HW13 due next Wednesday (10/29), HW14 due next Friday (10/31)

❖ Midterm (Monday 10/27, 5:30-6:40 pm)

▪ Midterm details Ed post #296
• Come early to get exam and settle in

• Make a cheat sheet! – two-sided letter page, handwritten

▪ Review session (Ed post #301) tonight at 4:30 pm in CSE2 G01 and on Zoom
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Midterm Rooms and Sections

❖ Show up to space designated by your registered section!

 ARC 147 CSE2 G20 SIG 134
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Lecture Outline (1/2)

❖ Structs and Typedef in C

❖ Struct Layout and Alignment

4



CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Structs in C (Review)

❖ A structured group of variables, possibly including other structs

▪ Way of defining compound data types
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struct song {
  char* title;
  int lengthInSeconds;
  int yearReleased;
};

struct song song1;
song1.title = "drivers license";
song1.lengthInSeconds = 242;
song1.yearReleased = 2021;

struct song song2;
song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

struct song {
  char* title;
  int lengthInSeconds;
  int yearReleased;
};

struct song song1;
song1.title = "drivers license";
song1.lengthInSeconds = 242;
song1.yearReleased = 2021;

struct song song2;
song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

struct song {
  char* title;
  int lengthInSeconds;
  int yearReleased;

};

struct song {
  char* title;
  int lengthInSeconds;
  int yearReleased;

};

song1
title: "drivers license"
lengthInSeconds:     242
yearReleased:       2021

song1
title: "drivers license"
lengthInSeconds:     242
yearReleased:       2021

song2
title:   "Call Me Maybe"
lengthInSeconds:     193
yearReleased:       2011

song2
title:   "Call Me Maybe"
lengthInSeconds:     193
yearReleased:       2011
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Struct Definitions (Review)

❖ Structure definition:

▪ Does NOT declare any instances

▪ Creates new data type “struct struct_tag”

❖ Variable declarations like any other data type:

❖ Can also combine struct and instance definitions:

▪ This syntax can be difficult to read, though:

6

struct struct_tag tag1, *pt, tag_ar[3];

pointer arrayinstance

struct struct_tag {
  /* fields */
} st, *p = &st;

struct struct_tag {
  type_1 field_1;
  …
  type_N field_N;
};

Easy to forget semicolon! 
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Scope of Struct Definition (Review)

❖ Why is the placement of struct definition important?

▪ Compiler needs to know about this new symbol/data type

▪ Without definition, program doesn’t know how much space to allocate

❖ Almost always define structs in global scope near the top of your file

▪ Struct definitions follow normal rules of scope

7

struct data {
   int ar[4];
   long d;
};

Size = 24 bytes struct rec {
   int a[4];
   long i;
   struct rec* next;
};Size = 32 bytes
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Typedef in C (Review)

❖ A way to create an alias for another data type:
typedef <data type> <alias>;

▪ After typedef, the alias can be used interchangeably with the original data type

▪ e.g., typedef unsigned long int uli;

❖ Joint struct definition and typedef:

8

typedef struct {
  /* fields */
} alias;
alias n1;

struct struct_tag {
  /* fields */
};
typedef struct struct_tag alias;
alias a1;
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Accessing Struct Fields (Review)

❖ Given a struct instance, access fields using the . operator:

▪ struct rec r1;  
r1.i = val;

❖ Given a pointer to a struct:

▪ struct rec* r = &r1;
r->i = val;  // or (*r).i = val;

❖ In assembly:  

▪ Holds address of the first byte in register (Rb) or label

▪ Access fields with offsets (D)

9

struct rec {
    int a[4];
    long i;
    struct rec* next;
} r1, *r = &r1;

# global struct r1
movslq %edi, %rdi
movq %rdi, r1+16(%rip)

# local struct
movslq %edi, %rdi
movq %rdi, -24(%rsp)
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Struct Pointers

❖ Pointers store addresses, which all “look” the same

▪ Lab 0 Example:  struct instance Scores could be treated as array of ints of size 4 
via pointer casting

▪ A struct pointer doesn’t have to point to a declared instance of that struct type

❖ Different struct fields may or may not be meaningful, depending on what 
the pointer points to

▪ This will be important for Lab 5!

10

int get_a3(struct rec* r) {
  return r->a[3];
}

int get_a3(struct rec* r) {
  return r->a[3];
}

movl  12(%rdi), %eax
  ret

movl  12(%rdi), %eax
  ret

r r+12

"r->a[3]"

Memory:
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Polling Questions (1/2)

❖ How much space does (in bytes) does an instance of struct ll_node 
take?

❖ Which of the following statements are syntactically valid?
▪ n1.next = &n2;

▪ n2->data = 351;

▪ n1.next->data = 333;

▪ (&n2)->next->next.data = 451;

11

struct ll_node {
  long data;
  struct ll_node* next;
} n1, n2;
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Lecture Outline (2/2)

❖ Structs and Typedef in C

❖ Struct Layout and Alignment
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Structure Representation (Review)

❖ Structure represented as block of memory

▪ Each instance is a contiguously-allocated region of memory big enough to hold all 
of the fields

❖ Compiler determines overall size + positions of fields

▪ Fields ordered according to declaration order, even if another ordering would be 
more compact

▪ Machine-level program has no understanding of the structures in the source code

13

struct rec {
    int a[4];
    long i;
    struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32
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Alignment Principles (Review)

❖ Primitive data type of size 𝐾 bytes is considered aligned if its
address is a multiple of 𝐾

▪ Required on some machines; x86-64 hardware will work regardless

▪ Memory accessed by aligned chunks of bytes (see: caching and virtual memory)
• Inefficient to load or store value that crosses boundaries 

❖ Address bit interpretation of alignment:

14

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002
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Structures & Alignment (Review)

❖ Unaligned Data

❖ Aligned Data

▪ Primitive data type of size 𝐾 bytes is considered aligned if its address is 
a multiple of 𝐾

15

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
  char c;
  int i[2];
  double v;
} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8
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Satisfying Alignment with Structures (1)

❖ Within struct we must satisfy each element’s 
alignment requirement

❖ Overall structure placement has alignment 
requirement 𝐾max

▪ 𝐾max = largest alignment of any field

❖ Address of the struct must be a multiple of 𝐾max

16

struct S1 {
  char c;
  int i[2];
  double v;
} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation
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Satisfying Alignment with Structures (2)

❖ Within struct we must satisfy each element’s 
alignment requirement

❖ Overall structure placement has alignment 
requirement 𝐾max

▪ 𝐾max = largest alignment of any field

❖ Overall structure size must be multiple of 𝐾max

17

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
  double v;
  int i[2];
  char c;
} st, *p = &st;

Multiple of 8Multiple of 8
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Arrays of Structures

❖ Overall structure length multiple of 𝐾𝑚𝑎𝑥

❖ Satisfy alignment requirement for every 
element in array

18

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
  double v;
  int i[2];
  char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation
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Alignment of Structs Summary

❖ Compiler will do the following:

1) Maintains declared ordering of fields in struct

2) Each field must be aligned within the struct to its 𝐾 (may insert padding)

3) Overall struct size must be multiple of 𝐾𝑚𝑎𝑥 (may insert padding)

4) When allocated, struct addresses will be aligned to 𝐾𝑚𝑎𝑥

❖ C Notes:

▪ sizeof() can be used to get the overall size of structs

▪ offsetof() can be used to get field offsets within structs

19
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Struct Layout Example (Review)

20

struct frag {
  char  c;
  int   i[3];
  struct frag* p;
  short s;
} f, *fp = &f;

struct size =

internal fragmentation =

external fragmentation =

fp

0
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How the Programmer Can Save Space

❖ Compiler must respect order elements are declared in

▪ Rule of thumb: declare field in decreasing order of alignment requirement

21

struct S3 {
  char c;
  int i;
  char d;
} st;

struct S4 {
  int i;
  char c;
  char d;
} st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes
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Polling Questions (2/2)

❖ Minimize the size of the struct by re-ordering the fields:

▪ What is the minimum size of struct new?

A.  22 bytes B.  24 bytes

C.  28 bytes D.  32 bytes

22

struct old {
  int i;

  short s[3];

  char* c;

  float f;
};

struct new {
  int    i;

  ______ ______;

  ______ ______;

  ______ ______;
};
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Homework Setup (if time)

❖ Struct in a struct?

▪ It’s just another data type, with its own alignment requirement

▪ Example: struct outer {
   char c;
   struct inner {
     short s;
     int i;
   } in;
 };

23

struct inner {
   short s;
   int i;
→ };
 struct outer {
   char c;
   struct inner in;
 };
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Summary

❖ Alignment

▪ Data of alignment requirement (i.e., size) 𝐾 is considered aligned if its address is a 
multiple of 𝐾

▪ Arrays have alignment requirement of an individual element, not the total size

❖ Structures

▪ Allocate bytes for fields in order declared by programmer – can make choices to 
minimize memory allocations

▪ Pad in middle to satisfy individual element alignment requirements (𝐾)
• Internal fragmentation

▪ Pad at end to satisfy overall struct alignment requirement (𝐾𝑚𝑎𝑥)
• External fragmentation

24
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