
CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

The Hardware/Software Interface
Structs and Alignment
The Hardware/Software Interface
Structs and Alignment

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

https://pixels.com/featured/1-computer-
programmer-funny-c-class-joke-noirty-designs.html

https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Relevant Course Information

❖ Lab 2 due tonight

❖ Lab 3 released next Wednesday (10/29)

▪ A shorter lab, due Friday, 11/7

❖ HW13 due next Wednesday (10/29), HW14 due next Friday (10/31)

❖ Midterm (Monday 10/27, 5:30-6:40 pm)

▪ Midterm details Ed post #296
• Come early to get exam and settle in

• Make a cheat sheet! – two-sided letter page, handwritten

▪ Review session (Ed post #301) tonight at 4:30 pm in CSE2 G01 and on Zoom

2

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Midterm Rooms and Sections

❖ Show up to space designated by your registered section!

 ARC 147 CSE2 G20 SIG 134

3

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (1/2)

❖ Structs and Typedef in C

❖ Struct Layout and Alignment

4

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Structs in C (Review)

❖ A structured group of variables, possibly including other structs

▪ Way of defining compound data types

5

struct song {
 char* title;
 int lengthInSeconds;
 int yearReleased;
};

struct song song1;
song1.title = "drivers license";
song1.lengthInSeconds = 242;
song1.yearReleased = 2021;

struct song song2;
song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

struct song {
 char* title;
 int lengthInSeconds;
 int yearReleased;
};

struct song song1;
song1.title = "drivers license";
song1.lengthInSeconds = 242;
song1.yearReleased = 2021;

struct song song2;
song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

struct song {
 char* title;
 int lengthInSeconds;
 int yearReleased;

};

struct song {
 char* title;
 int lengthInSeconds;
 int yearReleased;

};

song1
title: "drivers license"
lengthInSeconds: 242
yearReleased: 2021

song1
title: "drivers license"
lengthInSeconds: 242
yearReleased: 2021

song2
title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

song2
title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Struct Definitions (Review)

❖ Structure definition:

▪ Does NOT declare any instances

▪ Creates new data type “struct struct_tag”

❖ Variable declarations like any other data type:

❖ Can also combine struct and instance definitions:

▪ This syntax can be difficult to read, though:

6

struct struct_tag tag1, *pt, tag_ar[3];

pointer arrayinstance

struct struct_tag {
 /* fields */
} st, *p = &st;

struct struct_tag {
 type_1 field_1;
 …
 type_N field_N;
};

Easy to forget semicolon!

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Scope of Struct Definition (Review)

❖ Why is the placement of struct definition important?

▪ Compiler needs to know about this new symbol/data type

▪ Without definition, program doesn’t know how much space to allocate

❖ Almost always define structs in global scope near the top of your file

▪ Struct definitions follow normal rules of scope

7

struct data {
 int ar[4];
 long d;
};

Size = 24 bytes struct rec {
 int a[4];
 long i;
 struct rec* next;
};Size = 32 bytes

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Typedef in C (Review)

❖ A way to create an alias for another data type:
typedef <data type> <alias>;

▪ After typedef, the alias can be used interchangeably with the original data type

▪ e.g., typedef unsigned long int uli;

❖ Joint struct definition and typedef:

8

typedef struct {
 /* fields */
} alias;
alias n1;

struct struct_tag {
 /* fields */
};
typedef struct struct_tag alias;
alias a1;

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Accessing Struct Fields (Review)

❖ Given a struct instance, access fields using the . operator:

▪ struct rec r1;
r1.i = val;

❖ Given a pointer to a struct:

▪ struct rec* r = &r1;
r->i = val; // or (*r).i = val;

❖ In assembly:

▪ Holds address of the first byte in register (Rb) or label

▪ Access fields with offsets (D)

9

struct rec {
 int a[4];
 long i;
 struct rec* next;
} r1, *r = &r1;

global struct r1
movslq %edi, %rdi
movq %rdi, r1+16(%rip)

local struct
movslq %edi, %rdi
movq %rdi, -24(%rsp)

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Struct Pointers

❖ Pointers store addresses, which all “look” the same

▪ Lab 0 Example: struct instance Scores could be treated as array of ints of size 4
via pointer casting

▪ A struct pointer doesn’t have to point to a declared instance of that struct type

❖ Different struct fields may or may not be meaningful, depending on what
the pointer points to

▪ This will be important for Lab 5!

10

int get_a3(struct rec* r) {
 return r->a[3];
}

int get_a3(struct rec* r) {
 return r->a[3];
}

movl 12(%rdi), %eax
 ret

movl 12(%rdi), %eax
 ret

r r+12

"r->a[3]"

Memory:

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Polling Questions (1/2)

❖ How much space does (in bytes) does an instance of struct ll_node
take?

❖ Which of the following statements are syntactically valid?
▪ n1.next = &n2;

▪ n2->data = 351;

▪ n1.next->data = 333;

▪ (&n2)->next->next.data = 451;

11

struct ll_node {
 long data;
 struct ll_node* next;
} n1, n2;

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (2/2)

❖ Structs and Typedef in C

❖ Struct Layout and Alignment

12

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Structure Representation (Review)

❖ Structure represented as block of memory

▪ Each instance is a contiguously-allocated region of memory big enough to hold all
of the fields

❖ Compiler determines overall size + positions of fields

▪ Fields ordered according to declaration order, even if another ordering would be
more compact

▪ Machine-level program has no understanding of the structures in the source code

13

struct rec {
 int a[4];
 long i;
 struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Alignment Principles (Review)

❖ Primitive data type of size 𝐾 bytes is considered aligned if its
address is a multiple of 𝐾

▪ Required on some machines; x86-64 hardware will work regardless

▪ Memory accessed by aligned chunks of bytes (see: caching and virtual memory)
• Inefficient to load or store value that crosses boundaries

❖ Address bit interpretation of alignment:

14

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Structures & Alignment (Review)

❖ Unaligned Data

❖ Aligned Data

▪ Primitive data type of size 𝐾 bytes is considered aligned if its address is
a multiple of 𝐾

15

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
 char c;
 int i[2];
 double v;
} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Satisfying Alignment with Structures (1)

❖ Within struct we must satisfy each element’s
alignment requirement

❖ Overall structure placement has alignment
requirement 𝐾max

▪ 𝐾max = largest alignment of any field

❖ Address of the struct must be a multiple of 𝐾max

16

struct S1 {
 char c;
 int i[2];
 double v;
} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Satisfying Alignment with Structures (2)

❖ Within struct we must satisfy each element’s
alignment requirement

❖ Overall structure placement has alignment
requirement 𝐾max

▪ 𝐾max = largest alignment of any field

❖ Overall structure size must be multiple of 𝐾max

17

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
 double v;
 int i[2];
 char c;
} st, *p = &st;

Multiple of 8Multiple of 8

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Arrays of Structures

❖ Overall structure length multiple of 𝐾𝑚𝑎𝑥

❖ Satisfy alignment requirement for every
element in array

18

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
 double v;
 int i[2];
 char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Alignment of Structs Summary

❖ Compiler will do the following:

1) Maintains declared ordering of fields in struct

2) Each field must be aligned within the struct to its 𝐾 (may insert padding)

3) Overall struct size must be multiple of 𝐾𝑚𝑎𝑥 (may insert padding)

4) When allocated, struct addresses will be aligned to 𝐾𝑚𝑎𝑥

❖ C Notes:

▪ sizeof() can be used to get the overall size of structs

▪ offsetof() can be used to get field offsets within structs

19

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Struct Layout Example (Review)

20

struct frag {
 char c;
 int i[3];
 struct frag* p;
 short s;
} f, *fp = &f;

struct size =

internal fragmentation =

external fragmentation =

fp

0

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

How the Programmer Can Save Space

❖ Compiler must respect order elements are declared in

▪ Rule of thumb: declare field in decreasing order of alignment requirement

21

struct S3 {
 char c;
 int i;
 char d;
} st;

struct S4 {
 int i;
 char c;
 char d;
} st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Polling Questions (2/2)

❖ Minimize the size of the struct by re-ordering the fields:

▪ What is the minimum size of struct new?

A. 22 bytes B. 24 bytes

C. 28 bytes D. 32 bytes

22

struct old {
 int i;

 short s[3];

 char* c;

 float f;
};

struct new {
 int i;

 ______ ______;

 ______ ______;

 ______ ______;
};

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Homework Setup (if time)

❖ Struct in a struct?

▪ It’s just another data type, with its own alignment requirement

▪ Example: struct outer {
 char c;
 struct inner {
 short s;
 int i;
 } in;
 };

23

struct inner {
 short s;
 int i;
→ };
 struct outer {
 char c;
 struct inner in;
 };

CSE351IntroductionL14: Structs and Alignment CSE351, Autumn 2025

Summary

❖ Alignment

▪ Data of alignment requirement (i.e., size) 𝐾 is considered aligned if its address is a
multiple of 𝐾

▪ Arrays have alignment requirement of an individual element, not the total size

❖ Structures

▪ Allocate bytes for fields in order declared by programmer – can make choices to
minimize memory allocations

▪ Pad in middle to satisfy individual element alignment requirements (𝐾)
• Internal fragmentation

▪ Pad at end to satisfy overall struct alignment requirement (𝐾𝑚𝑎𝑥)
• External fragmentation

24

	Slide 1: The Hardware/Software Interface Structs and Alignment
	Slide 2: Relevant Course Information
	Slide 3: Midterm Rooms and Sections
	Slide 4: Lecture Outline (1/2)
	Slide 5: Structs in C (Review)
	Slide 6: Struct Definitions (Review)
	Slide 7: Scope of Struct Definition (Review)
	Slide 8: Typedef in C (Review)
	Slide 9: Accessing Struct Fields (Review)
	Slide 10: Struct Pointers
	Slide 11: Polling Questions (1/2)
	Slide 12: Lecture Outline (2/2)
	Slide 13: Structure Representation (Review)
	Slide 14: Alignment Principles (Review)
	Slide 15: Structures & Alignment (Review)
	Slide 16: Satisfying Alignment with Structures (1)
	Slide 17: Satisfying Alignment with Structures (2)
	Slide 18: Arrays of Structures
	Slide 19: Alignment of Structs Summary
	Slide 20: Struct Layout Example (Review)
	Slide 21: How the Programmer Can Save Space
	Slide 22: Polling Questions (2/2)
	Slide 23: Homework Setup (if time)
	Slide 24: Summary

