YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Autumn 2025

The Hardware/Software Interface

Structs and Alignment

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale

Violet Monserate

YOU HAVE
NO CLASS

https://pixels.com/featured/1-computer-

programmer-funny-c-class-joke-noirty-designs.html

https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Relevant Course Information

+» Lab 2 due tonight

+ Lab 3 released next Wednesday (10/29)
= A shorter lab, due Friday, 11/7

+» HW13 due next Wednesday (10/29), HW14 due next Friday (10/31)

+» Midterm (Monday 10/27, 5:30-6:40 pm)
= Midterm details Ed post #296

- Come early to get exam and settle in

- Make a cheat sheet! — two-sided letter page, handwritten

= Review session (Ed post #301) tonight at 4:30 pm in CSE2 GO1 and on Zoom

CSE351, Autumn 2025

/

/

CSE351, Autumn 2025

AD/CD: Kanishka

=

SIG 134
[
190é Naama

EEEEEEELEEIEETS

CSCSOUSOUSOCSOS0)

PROECTOR SCREEN

10N

Rose
0 BB/DB: Grace

istered sect

CSE2 G20

AE/CE:

t
c
(]
£
c

2

<<

5o
c
]
(2]

&
3)
=}
b

=

(%2}

<

-

|

ignated by your reg

s
AB/CB: Violet

$

=
MOTOREAED ScREEN

ARC 147

Show up to space des

Midterm Rooms and Sections

z m

m 5 wo

U oy =

= a &l

= o a

AL ¥ o ~

) c va)

2 >~ 5 2

W 4 g K= o
L A .m an_

S <L CM

) o .M“..

S u

> o <

= ol N~

z 2

] e

5]

= * o o

=

jom’

YA/ UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (1/2)

+ Structs and Typedef in C
+ Struct Layout and Alignment

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Structs in C (Review)

+ A structured group of variables, possibly including other structs

= Way of defining compound data types

struct song {
charx title;
int lengthInSeconds;
int yearReleased;

}s

struct song songl;

songl.title = "drivers Llicense";
songl.lengthInSeconds = 242;
songl.yearReleased = 2021;

struct song song2;

song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

p
struct song {
char*x title;
int lengthInSeconds;
int yearReleased;

\}; J

songl

’_title: "drivers Tlicense"
lengthInSeconds: 242
yearReleased: 2021
song?2

; title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Struct Definitions (Review)

_— Yolur choice

» Structure definition: struct struct_tag {
" Does NOT declare any instances type_1 field_1;
" Creates new data type “struct struct_tag”

type_N field_N;

}s .
- Easy to forget semicolon!

+ Variable declarations like any other data type:

struct struct_tag_tagl, *pt, tag_ar[3];

instance pointer array
. . o thiy is the ddd 1‘/)“'4'-
+» Can also combine struct and instance definitions: / (e iat)

—#-—7

= This syntax can be difficult to read, though: (?truct struct_tag

/*x fields *x/
3/ st, *p = &st;

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Scope of Struct Definition (Review)

+» Why is the placement of struct definition important?
= Compiler needs to know about this new symbol/data type
" Without definition, program doesn’t know how much space to allocate

struct data { |<— Size =24 bytes struct rec {
int ar[4]; int a[4];
long d; long 1;
}s struct recx next;
Size =32 bytes—— | };

+ Almost always define structs in global scope near the top of your file

= Struct definitions follow normal rules of scope

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Autumn 2025

Typedef in C (Review)

% A way to create an alias for another data type:
typedef <data type> <alias>;

= After typedef, the alias can be used interchangeably with the original data type
" e.g., typedef unsigned long int uli;
-

al\lras

Aota +>/P<f. o.b
% Joint struct definition and typedef: -

Didne)’str‘uct.struct_tag { cam\omc&wp/edef/g@
smctq /* flelds x/ — /* fields *x/
L}3 \} alias;

@ypesct| typedef struct struct_tag alias) alias nl;

@lias al;

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Accessing Struct Fields (Review)

CSE351, Autumn 2025

+ @Given a struct instance, access fields using the . operator:

"= struct rec rl;
rl.1 = val;
« @Given a pointer to a struct:

(0 dereference Cse"r i stance)
= struct recx r = &rl; G@omg field
r->1 = valy // or (*r).1 = val;

+ In assembly:

" Holds address of the first byte in register (Rb) or label
= Access fields with offsets (D)

struct rec {

int a[4];

long 1;

struct recx next;
} rl, *xr = &ril;

local struct
movslq %edi, %rdi
mov(q %rdi, —24(%rsp)

global struct rl
movslq %edi, %rdi
mov(q %rdi, rl+16(%rip)

9

L14: Structs and Alignment

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Struct Pointers

+ Pointers store addresses, which all “look” the same
= Lab 0 Example: struct instance Scores could be treated as array of ints of size 4

via pointer casting

= A struct pointer doesn’t have to point to a declared instance of that struct type

+ Different struct fields may or may not be meaningful, depending on what

the pointer points to
= This will be important for Lab 5!

int get_a3(struct recx r) {
return r->a[3];

}

Memory:

movl
ret

12 (%rdi), %eax

r+12

Ii—l .

"r—>a[3] n

10

YA UNIVERSITY of WASHINGTON L14: Structs

Polling Questions (1/2)

and Alignment

%

83 long data;

5|} nl, n2;

struct ll_ngde {

98 struct 11_nodéx next;

} fels

N
t+wo instances

CSE351, Autumn 2025

+ How much space does (in bytes) does an instance of struct 11_node

take? m

2 WhICh of the following statements are syntactically valid?

v/"ﬁl next = §%2

)<' n2- >data = 351;

rhfl' 'f r lon
Vs nl ne%; >da%a = 333;

1-
Xn (&n2) - >n%xt >ne£% data = 451;

. for .S‘f‘rud'm.S‘l"&*\LU

th\é‘i')

—> fr struct Poin"l' e’s
Cpto)

11

YA/ UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (2/2)

% Structs and Typedefin C
+ Struct Layout and Alighment

12

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Structure Representation (Review)

struct rec {
O int a[4]; r struct vee ST

long i;) — — _~
® struct rec* next; a[ﬂla(u}la[ﬂlo\[ﬂ 1 next
}ost, kr = &st; 10 16 r24 32

L_ Cponter

rnstance

+ Structure represented as block of memory

" Each instance is a contiguously-allocated region of memory big enough to hold all
of the fields

+» Compiler determines overall size + positions of fields

%Fields ordered according to declaration order, even if another ordering would be
more compact

" Machine-level program has no understanding of the structures in the source code

13

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Alignment Principles (Review)

+ Primitive data type of size K bytes is considered aligned if its
address is a multiple of K
= Required on some machines; x86-64 hardware will work regardless
= Memory accessed by aligned chunks of bytes (see: caching and virtual memory)

- |nefficient to load or store value that crosses boundaries

“mulfiole of " means o remainder Lhea You fiide by.

+» Address bit interpretation of alignment: " K e of 2,
d\iu”\c)\if\j B\/ K s eflu'\ualey'\‘\' Y > ‘Q‘Tg?_(l()

K w
- yP Mo remainder Mean) no uc'@w 13 \'oSr‘ dwn\n_g the dlnnq

1 char No restrictions 5 geros in owart Jagy(0) b
2 short Lowest bit must be zero: ...0, @)

: il K
4 Hint, float Lowest 2 bits zero: ...00, i:::si\ﬂzg}; 5

8 Tlong, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

14

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Structures & Alighment (Review)

+» Unaligned Data ARS8 o
char c;
c|l 4[0] i[1] Y, int i[2];
double v;
1 17 ’
P P* p+> p*3 P } st, *p = &st;

+ Aligned Data

" Primitive data type of size K bytes is considered aligned if its address is
a multiple of K

C 1[0] 1[1] Y

p+0 4 p+8 p+16 p+24
Multiple o Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

15

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Satisfying Alignment with Structures (1)

+ Within struct we must satisfy each element’s _K_stzzgt .2»1 {
. . 1 ;
alignment requirement gl dnt d[21;
. R| double v;
« QOverall structure placement has alignment } st, *p = &st;
. [
requirement Kmaxf K oax=8
" Kmax = largest alignment of any field
A}Tghmen’i’ requirement a’F Sf'i(“” “M‘(
+ Address of the struct must be a multiple of K4«
c i[0] i[1] v

pt+0o 4 pt+8 pt16 pt+t24
‘ Multiple o Multiple of 8

Multiple of 8 internal fragmentation 6

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Satisfying Alignment with Structures (2)

+» Within struct we must satisfy each element’s [struct S2 {

alignment requirement

« QOverall structure placement has alignment 3

double v;

int i[2];
char c;

st, *p = &st;

requirement K,

" Kmax = largest alignment of any field

+ Overall structure size must be multiple of K.«

Vv i[0] i[1] |c
p+0 p+8 p+16 pt+24
Multiple of 8 external fragmentation Multiple of 8

CSE351, Autumn 2025

17

YA UNIVERSITY of WASHINGTON

L14:

Structs and Alignment

CSE351, Autumn 2025

Arrays of Structures

+ Overall structure length multiple of K,,,,,

+ Satisfy alignment requirement for every

element in array

struct S2 {
double v;
int i[2];
char c;

} al10];

a[o] |

Y

a1 7

8[2])///// e o o

6+0
\

24

I

a“ymd O re sses

at+t72

P

1[0]

1[1]

C

at24

at+t32

at+t40 at48
| \/
ardl < fhis Lsel & \o¢\'x.3\’

external fragmentation

18

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Alignment of Structs Summary

+» Compiler will do the following:
1) Maintains declared ordering of fields in struct
2) Each field must be aligned within the struct to its K (may insert padding)

3) Overall struct size must be multiple of K,,,,,, (may insert padding)
4) When allocated, struct addresses will be aligned to K,,, ;.

+ C Notes:
" sizeof () can be used to get the overall size of structs
= offsetof () can be used to get field offsets within structs

19

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Struct Layout Example (Review)

K|struct frag {
71 char c; struct size = 32 R

1
L int i[3]; . |]
9| struct fragx p; internal fragmentation = 2
L| short s; external fragmentation = 4 £
} f, *'Fp = &-F;
Kmx:%
fp

P |/////(f i) | it (i l P ____M
;N ¢ 2q 26 5z

0)
L intermal edernal

20

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

" Rule of thumb: declare field in decreasing order of alignment requirement

struct S3 {
char c;
int 1;
char d;

b ost;

—

C 7

Y
12 bytes

struct S4 {
int 1i;
char c;
char d;

} ost;

CSE351, Autumn 2025

21

YA UNIVERSITY of WASHINGTON

Polling Questions (2/2)

L14: Structs and Alignment

+» Minimize the size of the struct by re-ordering the fields:

K

T o N J:I'

Kmx = g

struct old {
int i;
short s[3];

charx c;

float f;
s

=)

CSE351, Autumn 2025

struct new {

b

4+

int i3

‘F |o GC+ .F’

le'\ar ¥ C

SL\or‘(’ s (3]
T3

hes e (iv\"‘tr e

. s(culd also seotida
)
&

\S. Cx‘t'erng.\ ‘F\r@j)

= What is the minimum size of struct new?

A.

C. 28 bytes

[B. 24 bytes]

D. 32 bytes

st a1 sOOulZZA4 < [€ P
O 4 1o (6 24 2% 32
Sadrs L1 | £ | < 9| 00 | (%
o 4 g 0 1

22

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Homework Setup (if time)

s'h-uc[' MMNer L;S__J Z Zl 1)
O 2 | &

« Struct in a struct?

" |t’s just another data type, with its own alignment requirement

= Example: struct outer { K struct dinner {
. 92 .
char c; Poshort si oy
struct inner { | dnt 1
short s; - Fs
int i; K struct outer {
} ing 1 char c;
}; 44 struct Inner 1in;
}s Koo = 4

steuct outer: E% ll:@ 3 _JI

O A H & ¥ 12

23

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Autumn 2025

Summary

+» Alignment

= Data of alignment requirement (i.e., size) K is considered aligned if its address is a
multiple of K

= Arrays have alignment requirement of an individual element, not the total size

< Structures

= Allocate bytes for fields in order declared by programmer — can make choices to
minimize memory allocations

= Pad in middle to satisfy individual element alignment requirements (K)
- Internal fragmentation

= Pad at end to satisfy overall struct alignment requirement (K., ;)
- External fragmentation

24

	Slide 1: The Hardware/Software Interface Structs and Alignment
	Slide 2: Relevant Course Information
	Slide 3: Midterm Rooms and Sections
	Slide 4: Lecture Outline (1/2)
	Slide 5: Structs in C (Review)
	Slide 6: Struct Definitions (Review)
	Slide 7: Scope of Struct Definition (Review)
	Slide 8: Typedef in C (Review)
	Slide 9: Accessing Struct Fields (Review)
	Slide 10: Struct Pointers
	Slide 11: Polling Questions (1/2)
	Slide 12: Lecture Outline (2/2)
	Slide 13: Structure Representation (Review)
	Slide 14: Alignment Principles (Review)
	Slide 15: Structures & Alignment (Review)
	Slide 16: Satisfying Alignment with Structures (1)
	Slide 17: Satisfying Alignment with Structures (2)
	Slide 18: Arrays of Structures
	Slide 19: Alignment of Structs Summary
	Slide 20: Struct Layout Example (Review)
	Slide 21: How the Programmer Can Save Space
	Slide 22: Polling Questions (2/2)
	Slide 23: Homework Setup (if time)
	Slide 24: Summary

