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YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Relevant Course Information

+» Lab 2 due tonight

+ Lab 3 released next Wednesday (10/29)
= A shorter lab, due Friday, 11/7

+» HW13 due next Wednesday (10/29), HW14 due next Friday (10/31)

+» Midterm (Monday 10/27, 5:30-6:40 pm)
= Midterm details Ed post #296

- Come early to get exam and settle in

- Make a cheat sheet! — two-sided letter page, handwritten

= Review session (Ed post #301) tonight at 4:30 pm in CSE2 GO1 and on Zoom

CSE351, Autumn 2025
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YA/ UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (1/2)

+ Structs and Typedef in C
+ Struct Layout and Alignment
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L14: Structs and Alignment

Structs in C (Review)

+ A structured group of variables, possibly including other structs

= Way of defining compound data types

struct song {
charx title;
int lengthInSeconds;
int yearReleased;

}s

struct song songl;

songl.title = "drivers Llicense";
songl.lengthInSeconds = 242;
songl.yearReleased = 2021;

struct song song2;

song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

p
struct song {
char*x title;
int lengthInSeconds;
int yearReleased;

\}; J

songl

’_title: "drivers Tlicense"
lengthInSeconds: 242
yearReleased: 2021
song?2

; title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351, Autumn 2025
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Struct Definitions (Review)

_— Yolur choice

» Structure definition: struct struct_tag {
" Does NOT declare any instances type_1 field_1;
" Creates new data type “struct struct_tag”

type_N field_N;

}s .
- Easy to forget semicolon!

+ Variable declarations like any other data type:

struct struct_tag_tagl, *pt, tag_ar[3];

instance pointer array
. . o thiy is the ddd 1‘/)“'4'-
+» Can also combine struct and instance definitions: / (e iat)

—#-—7

= This syntax can be difficult to read, though: (?truct struct_tag

/*x fields *x/
3/ st, *p = &st;
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Scope of Struct Definition (Review)

+» Why is the placement of struct definition important?
= Compiler needs to know about this new symbol/data type
" Without definition, program doesn’t know how much space to allocate

struct data { |<— Size =24 bytes struct rec {
int ar[4]; int a[4];
long d; long 1;
}s struct recx next;
Size =32 bytes—— | };

+ Almost always define structs in global scope near the top of your file

= Struct definitions follow normal rules of scope
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L14: Structs and Alignment

CSE351, Autumn 2025

Typedef in C (Review)

% A way to create an alias for another data type:
typedef <data type> <alias>;

= After typedef, the alias can be used interchangeably with the original data type
" e.g., typedef unsigned long int uli;
-

al\lras

Aota +>/P<f. o.b
% Joint struct definition and typedef: -

Didne )’str‘uct.struct_tag { cam\omc&wp/edef/g@
smctq /* flelds x/ — /* fields *x/
L}3 \} alias;

@ypesct| typedef struct struct_tag alias) alias nl;

@lias al;
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L14: Structs and Alignment

Accessing Struct Fields (Review)

CSE351, Autumn 2025

+ @Given a struct instance, access fields using the . operator:

"= struct rec rl;
rl.1 = val;
« @Given a pointer to a struct:

(0 dereference Cse"r i stance)
= struct recx r = &rl; G@omg field
r->1 = valy // or (*r).1 = val;

+ In assembly:

" Holds address of the first byte in register (Rb) or label
= Access fields with offsets (D)

struct rec {

int a[4];

long 1;

struct recx next;
} rl, *xr = &ril;

# local struct
movslq %edi, %rdi
mov(q %rdi, —24(%rsp)

# global struct rl
movslq %edi, %rdi
mov(q %rdi, rl+16(%rip)

9
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YA UNIVERSITY of WASHINGTON

Struct Pointers

+ Pointers store addresses, which all “look” the same
= Lab 0 Example: struct instance Scores could be treated as array of ints of size 4

via pointer casting

= A struct pointer doesn’t have to point to a declared instance of that struct type

+ Different struct fields may or may not be meaningful, depending on what

the pointer points to
= This will be important for Lab 5!

int get_a3(struct recx r) {
return r->a[3];

}

Memory:

movl
ret

12 (%rdi), %eax

r+12

Ii—l .

"r—>a[3] n

10
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Polling Questions (1/2)

and Alignment

%

83 long data;

5|} nl, n2;

struct ll_ngde {

98 struct 11_nodéx next;

} fels

N
t+wo instances

CSE351, Autumn 2025

+ How much space does (in bytes) does an instance of struct 11_node

take? m

2 WhICh of the following statements are syntactically valid?

v/"ﬁl next = §%2

)<' n2- >data = 351;

rhfl' 'f r lon
Vs nl ne%; >da%a = 333;

1-
Xn (&n2) - >n%xt >ne£% data = 451;

. for .S‘f‘rud'm.S‘l"&*\LU

th\é‘i')

—> fr struct Poin"l' e’s
Cpto)

11
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Lecture Outline (2/2)

% Structs and Typedefin C
+ Struct Layout and Alighment

12



YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Structure Representation (Review)

struct rec {
O int a[4]; r struct vee ST

long i; ) — — _~
® struct rec* next; a[ﬂla(u}la[ﬂlo\[ﬂ 1 next
}ost, kr = &st; 10 16 r24 32

L_ Cponter

rnstance

+ Structure represented as block of memory

" Each instance is a contiguously-allocated region of memory big enough to hold all
of the fields

+» Compiler determines overall size + positions of fields

%Fields ordered according to declaration order, even if another ordering would be
more compact

" Machine-level program has no understanding of the structures in the source code

13
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YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Alignment Principles (Review)

+ Primitive data type of size K bytes is considered aligned if its
address is a multiple of K
= Required on some machines; x86-64 hardware will work regardless
= Memory accessed by aligned chunks of bytes (see: caching and virtual memory)

- |nefficient to load or store value that crosses boundaries

“mulfiole of " means o remainder Lhea You fiide by.

+» Address bit interpretation of alignment: " K e of 2,
d\iu”\c)\if\j B\/ K s eflu'\ualey'\‘\' Y > ‘Q‘Tg?_(l()

K w
- yP Mo remainder  Mean) no uc'@w 13 \'oSr‘ dwn\n_g the dlnnq

1 char No restrictions 5 geros in owart Jagy(0) b
2 short Lowest bit must be zero: ...0, @)

: il K
4 Hint, float Lowest 2 bits zero: ...00, i:::si\ﬂzg}; 5

8 Tlong, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

14
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Structures & Alighment (Review)

+» Unaligned Data ARS8 o
char c;
c|l 4[0] i[1] Y, int i[2];
double v;
1 17 ’
P P* p+> p*3 P } st, *p = &st;

+ Aligned Data

" Primitive data type of size K bytes is considered aligned if its address is
a multiple of K

C 1[0] 1[1] Y

p+0 4 p+8 p+16 p+24
Multiple o Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

15
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Satisfying Alignment with Structures (1)

+ Within struct we must satisfy each element’s _K_stzzgt .2»1 {
. . 1 ;
alignment requirement gl dnt d[21;
. R| double v;
« QOverall structure placement has alignment } st, *p = &st;
. [
requirement Kmaxf K oax=8
" Kmax = largest alignment of any field
A}Tghmen’i’ requirement a’F Sf'i(“” “M‘(
+ Address of the struct must be a multiple of K4«
c i[0] i[1] v

pt+0o 4 pt+8 pt16 pt+t24
‘ Multiple o Multiple of 8

Multiple of 8 internal fragmentation 6
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Satisfying Alignment with Structures (2)

+» Within struct we must satisfy each element’s  [struct S2 {

alignment requirement

« QOverall structure placement has alignment 3

double v;

int i[2];
char c;

st, *p = &st;

requirement K,

" Kmax = largest alignment of any field

+ Overall structure size must be multiple of K.«

Vv i[0] i[1] |c
p+0 p+8 p+16 pt+24
Multiple of 8 external fragmentation Multiple of 8

CSE351, Autumn 2025
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L14:

Structs and Alignment
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Arrays of Structures

+ Overall structure length multiple of K,,,,,

+ Satisfy alignment requirement for every

element in array

struct S2 {
double v;
int i[2];
char c;

} al10];

a[o] |

Y

a1 7

8[2] )///// e o o

6+0
\

24

I

a“ymd O re sses

at+t72

P

1[0]

1[1]

C

at24

at+t32

at+t40 at48
| \/
ardl < fhis Lsel & \o¢\'x.3\’

external fragmentation

18
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YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Alignment of Structs Summary

+» Compiler will do the following:
1) Maintains declared ordering of fields in struct
2) Each field must be aligned within the struct to its K (may insert padding)

3) Overall struct size must be multiple of K,,,,,, (may insert padding)
4) When allocated, struct addresses will be aligned to K,,, ;.

+ C Notes:
" sizeof () can be used to get the overall size of structs
= offsetof () can be used to get field offsets within structs

19
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Struct Layout Example (Review)

K|struct frag {
71 char c; struct size = 32 R

1
L int i[3]; . | ]
9| struct fragx p; internal fragmentation = 2
L| short s; external fragmentation = 4 £
} f, *'Fp = &-F;
Kmx:%
fp

P |/////(f i) | it (i l P ____M
;N ¢ 2q 26 5z

0)
L intermal edernal

20
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L14: Structs and Alignment

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

" Rule of thumb: declare field in decreasing order of alignment requirement

struct S3 {
char c;
int 1;
char d;

b ost;

—

C 7

Y
12 bytes

struct S4 {
int 1i;
char c;
char d;

} ost;

CSE351, Autumn 2025
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Polling Questions (2/2)

L14: Structs and Alignment

+» Minimize the size of the struct by re-ordering the fields:

K

T o N J:I'

Kmx = g

struct old {
int i;
short s[3];

charx c;

float f;
s

=)

CSE351, Autumn 2025

struct new {

b

4+

int i3

‘F |o GC+ .F’

le'\ar ¥ C

SL\or‘(’ s (3]
T3

hes e (iv\"‘tr e

. s(culd also seotida
)
&

\S. Cx‘t'erng.\ ‘F\r@j)

= What is the minimum size of struct new?

A.

C. 28 bytes

[B. 24 bytes]

D. 32 bytes

st a1 sOOulZZA4 < [€ P
O 4 1o (6 24 2% 32
Sadrs L1 | £ | < 9| 00 | (%
o 4 g 0 1

22
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Homework Setup (if time)

s'h-uc[' MMNer L;S__J Z Zl 1 )
O 2 | &

« Struct in a struct?

" |t’s just another data type, with its own alignment requirement

= Example: struct outer { K struct dinner {
. 92 .
char c; Poshort si oy
struct inner { | dnt 1
short s; - Fs
int i; K struct outer {
} ing 1 char c;
}; 44 struct Inner 1in;
}s Koo = 4

steuct outer: E% ll:@ 3 _JI

O A H & ¥ 12

23
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L14: Structs and Alignment

CSE351, Autumn 2025

Summary

+» Alignment

= Data of alignment requirement (i.e., size) K is considered aligned if its address is a
multiple of K

= Arrays have alignment requirement of an individual element, not the total size

< Structures

= Allocate bytes for fields in order declared by programmer — can make choices to
minimize memory allocations

= Pad in middle to satisfy individual element alignment requirements (K)
- Internal fragmentation

= Pad at end to satisfy overall struct alignment requirement (K., ;)
- External fragmentation

24
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