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YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Relevant Course Information

+» Lab 2 due tonight

+ Lab 3 released next Wednesday (10/29)
= A shorter lab, due Friday, 11/7

+» HW13 due next Wednesday (10/29), HW14 due next Friday (10/31)

+» Midterm (Monday 10/27, 5:30-6:40 pm)
= Midterm details Ed post #296

- Come early to get exam and settle in

- Make a cheat sheet! — two-sided letter page, handwritten

= Review session (Ed post #301) tonight at 4:30 pm in CSE2 GO1 and on Zoom

CSE351, Autumn 2025
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Lecture Outline (1/2)

+ Structs and Typedef in C
+ Struct Layout and Alignment
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L14: Structs and Alignment

Structs in C (Review)

+ A structured group of variables, possibly including other structs

= Way of defining compound data types

struct song {
charx title;
int lengthInSeconds;
int yearReleased;

}s

struct song songl;

songl.title = "drivers Llicense";
songl.lengthInSeconds = 242;
songl.yearReleased = 2021;

struct song song2;

song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

p
struct song {
char*x title;
int lengthInSeconds;
int yearReleased;

\}; J

songl

’_title: "drivers Tlicense"
lengthInSeconds: 242
yearReleased: 2021
song?2

; title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351, Autumn 2025
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Struct Definitions (Review)

+ Structure definition: SED S e 4
= Does NOT declare any instances type_1 field_1;

= Creates new data type “struct struct_tag” ']c'ype N field N:
—_ —"%)

}s .
- Easy to forget semicolon!

+ Variable declarations like any other data type:

struct struct_tagztagl, *pt, tag_ar[B];

instance pointer array

« Can also combine struct and instance definitions:

= This syntax can be difficult to read, though: | struct struct_tag {
/*x fields *x/
} st, *xp = &st;
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Scope of Struct Definition (Review)

+» Why is the placement of struct definition important?
= Compiler needs to know about this new symbol/data type
" Without definition, program doesn’t know how much space to allocate

struct data { |<— Size =24 bytes struct rec {
int ar[4]; int a[4];
long d; long 1;
}s struct recx next;
Size =32 bytes—— | };

+ Almost always define structs in global scope near the top of your file

= Struct definitions follow normal rules of scope



YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Typedef in C (Review)

% A way to create an alias for another data type:
typedef <data type> <alias>;

CSE351, Autumn 2025

= After typedef, the alias can be used interchangeably with the original data type

= e.g., typedef unsigned long int uli;

% Joint struct definition and typedef:

struct struct_tag {
/* fields */ —
I

typedef struct struct_tag alias;

typedef struct {
/* fields */

} alias;

alias nl;

alias al;
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Accessing Struct Fields (Review)

CSE351, Autumn 2025

+ @Given a struct instance, access fields using the . operator:

"= struct rec rl;
rl.1 = val;
« @Given a pointer to a struct:

= struct recx r = &rl;
r->1 = valy // or (*r).1 = val;

+ In assembly:

" Holds address of the first byte in register (Rb) or label
= Access fields with offsets (D)

struct rec {

int a[4];

long 1;

struct recx next;
} rl, *xr = &ril;

# local struct
movslq %edi, %rdi
mov(q %rdi, —24(%rsp)

# global struct rl
movslq %edi, %rdi
mov(q %rdi, rl+16(%rip)

9
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Struct Pointers

+ Pointers store addresses, which all “look” the same
= Lab 0 Example: struct instance Scores could be treated as array of ints of size 4

via pointer casting

= A struct pointer doesn’t have to point to a declared instance of that struct type

+ Different struct fields may or may not be meaningful, depending on what

the pointer points to
= This will be important for Lab 5!

int get_a3(struct recx r) {
return r->a[3];

}

Memory:

movl
ret

12 (%rdi), %eax

r+12

Ii—l .

"r—>a[3] n

10
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Polling Questions (1/2)

struct 1l _node {

long data;

struct ll_node* next;
} nl, n2;

+ How much space does (in bytes) does an instance of struct 11_node
take?

+» Which of the following statements are syntactically valid?
" nl.next = &n2;
= n2->data = 351;
" nl.next->data = 333;
" (&n2)->next->next.data = 451;

11
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Lecture Outline (2/2)

% Structs and Typedefin C
+ Struct Layout and Alighment

12
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Structure Representation (Review)

struct rec { r
int a[4];
long 1;
struct rec* next; a 7 next
} st, *r = &st; 0 16 24 32

+ Structure represented as block of memory

" Each instance is a contiguously-allocated region of memory big enough to hold all
of the fields

+» Compiler determines overall size + positions of fields

" Fields ordered according to declaration order, even if another ordering would be
more compact

" Machine-level program has no understanding of the structures in the source code

13
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Alignment Principles (Review)

+ Primitive data type of size K bytes is considered aligned if its
address is a multiple of K
= Required on some machines; x86-64 hardware will work regardless
= Memory accessed by aligned chunks of bytes (see: caching and virtual memory)

- |nefficient to load or store value that crosses boundaries

+» Address bit interpretation of alignment:

1 char No restrictions
2 short Lowest bit must be zero: ...0,
4 1int, float Lowest 2 bits zero: ...00,

8 Tlong, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

14
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Structures & Alighment (Review)

+» Unaligned Data ARS8 o
char c;
c|l 4[0] i[1] Y, int i[2];
double v;
1 17 ’
P P* p+> p*3 P } st, *p = &st;

+ Aligned Data

" Primitive data type of size K bytes is considered aligned if its address is
a multiple of K

C 1[0] 1[1] Y

p+0 4 p+8 p+16 p+24
Multiple o Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

15
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Satisfying Alignment with Structures (1)

+» Within struct we must satisfy each element’s
alignment requirement

« QOverall structure placement has alignment
requirement K,

" Kmax = largest alignment of any field

+ Address of the struct must be a multiple of K4«

struct S1 {
char c;
int i[2];
double v;

} st, *p = &st;

1[0] i[1]

C
p+0
Mult
Multiple of 8

4

pleo

p+8
M

internal fragmentation

p+16

ultiple of 8

p+24

CSE351, Autumn 2025
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Satisfying Alignment with Structures (2)

+» Within struct we must satisfy each element’s  [struct S2 {

alignment requirement

« QOverall structure placement has alignment 3

double v;

int i[2];
char c;

st, *p = &st;

requirement K,

" Kmax = largest alignment of any field

+ Overall structure size must be multiple of K.«

Vv i[0] i[1] |c
p+0 p+8 p+16 pt+24
Multiple of 8 external fragmentation Multiple of 8

CSE351, Autumn 2025
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Arrays of Structures

<« Overall str r i struct S2 {
Overall structure length multiple of K, 4, o
+ Satisfy alignment requirement for every i:t 10213
. char c;
element in array } a[10];
alo] al1] a[2] e o o
a+0 at+24 a+48 a+72

Y 1[0] 1[1] C

a+24 a+32 a+40 /‘ a+48

external fragmentation

CSE351, Autumn 2025
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Alignment of Structs Summary

+» Compiler will do the following:
1) Maintains declared ordering of fields in struct
2) Each field must be aligned within the struct to its K (may insert padding)

3) Overall struct size must be multiple of K,,,,,, (may insert padding)
4) When allocated, struct addresses will be aligned to K,,, ;.

+ C Notes:
" sizeof () can be used to get the overall size of structs
= offsetof () can be used to get field offsets within structs

19
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Struct Layout Example (Review)

K|struct frag {
71 char c; struct size = 32 R

1
L int i[3]; . | ]
9| struct fragx p; internal fragmentation = 2
L| short s; external fragmentation = 4 £
} f, *'Fp = &-F;
Kmx:%
fp

P |/////(f i) | it (i l P ____M
;N ¢ 2q 26 5z

0)
L intermal edernal

20



YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

" Rule of thumb: declare field in decreasing order of alignment requirement

struct S3 {
char c;
int 1;
char d;

b ost;

—

C 7

Y
12 bytes

struct S4 {
int 1i;
char c;
char d;

} ost;

CSE351, Autumn 2025
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Polling Questions (2/2)

+» Minimize the size of the struct by re-ordering the fields:

struct old { struct new {
int 1; int 13

short s[3];

)
chars c: —> ;

float f; )
s b5

= What is the minimum size of struct new?
A. B. 24 bytes

C. 28 bytes D. 32 bytes

22
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Homework Setup (if time)

« Struct in a struct?

CSE351, Autumn 2025

" |t’s just another data type, with its own alignment requirement

= Example:

struct outer {

Fs

char c;

struct inner {
short s;
int i;

Foan;

struct inner {
short s;
int i;

b3

struct outer {
char c;
struct inner 1in;

}s

23
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Summary

+» Alignment

= Data of alignment requirement (i.e., size) K is considered aligned if its address is a
multiple of K

= Arrays have alignment requirement of an individual element, not the total size

< Structures

= Allocate bytes for fields in order declared by programmer — can make choices to
minimize memory allocations

= Pad in middle to satisfy individual element alignment requirements (K)
- Internal fragmentation

= Pad at end to satisfy overall struct alignment requirement (K., ;)
- External fragmentation

24
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