YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Autumn 2025

The Hardware/Software Interface

Structs and Alignment

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale

Violet Monserate

YOU HAVE
NO CLASS

https://pixels.com/featured/1-computer-

programmer-funny-c-class-joke-noirty-designs.html

https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html
https://pixels.com/featured/1-computer-programmer-funny-c-class-joke-noirty-designs.html

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Relevant Course Information

+» Lab 2 due tonight

+ Lab 3 released next Wednesday (10/29)
= A shorter lab, due Friday, 11/7

+» HW13 due next Wednesday (10/29), HW14 due next Friday (10/31)

+» Midterm (Monday 10/27, 5:30-6:40 pm)
= Midterm details Ed post #296

- Come early to get exam and settle in

- Make a cheat sheet! — two-sided letter page, handwritten

= Review session (Ed post #301) tonight at 4:30 pm in CSE2 GO1 and on Zoom

CSE351, Autumn 2025

/

/

CSE351, Autumn 2025

AD/CD: Kanishka

=

SIG 134
[
190é Naama

EEEEEEELEEIEETS

CSCSOUSOUSOCSOS0)

PROECTOR SCREEN

10N

Rose
0 BB/DB: Grace

istered sect

CSE2 G20

AE/CE:

t
c
(]
£
c

2

<<

5o
c
]
(2]

&
3)
=}
b

=

(%2}

<

-

|

ignated by your reg

s
AB/CB: Violet

$

=
MOTOREAED ScREEN

ARC 147

Show up to space des

Midterm Rooms and Sections

z m

m 5 wo

U oy =

= a &l

= o a

AL ¥ o ~

) c va)

2 >~ 5 2

W 4 g K= o
L A .m an_

S <L CM

) o .M“..

S u

> o <

= ol N~

z 2

] e

5]

= * o o

=

jom’

YA/ UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (1/2)

+ Structs and Typedef in C
+ Struct Layout and Alignment

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Structs in C (Review)

+ A structured group of variables, possibly including other structs

= Way of defining compound data types

struct song {
charx title;
int lengthInSeconds;
int yearReleased;

}s

struct song songl;

songl.title = "drivers Llicense";
songl.lengthInSeconds = 242;
songl.yearReleased = 2021;

struct song song2;

song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

p
struct song {
char*x title;
int lengthInSeconds;
int yearReleased;

\}; J

songl

’_title: "drivers Tlicense"
lengthInSeconds: 242
yearReleased: 2021
song?2

; title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Struct Definitions (Review)

+ Structure definition: SED S e 4
= Does NOT declare any instances type_1 field_1;

= Creates new data type “struct struct_tag” ']c'ype N field N:
—_ —"%)

}s .
- Easy to forget semicolon!

+ Variable declarations like any other data type:

struct struct_tagztagl, *pt, tag_ar[B];

instance pointer array

« Can also combine struct and instance definitions:

= This syntax can be difficult to read, though: | struct struct_tag {
/*x fields *x/
} st, *xp = &st;

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Scope of Struct Definition (Review)

+» Why is the placement of struct definition important?
= Compiler needs to know about this new symbol/data type
" Without definition, program doesn’t know how much space to allocate

struct data { |<— Size =24 bytes struct rec {
int ar[4]; int a[4];
long d; long 1;
}s struct recx next;
Size =32 bytes—— | };

+ Almost always define structs in global scope near the top of your file

= Struct definitions follow normal rules of scope

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Typedef in C (Review)

% A way to create an alias for another data type:
typedef <data type> <alias>;

CSE351, Autumn 2025

= After typedef, the alias can be used interchangeably with the original data type

= e.g., typedef unsigned long int uli;

% Joint struct definition and typedef:

struct struct_tag {
/* fields */ —
I

typedef struct struct_tag alias;

typedef struct {
/* fields */

} alias;

alias nl;

alias al;

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Accessing Struct Fields (Review)

CSE351, Autumn 2025

+ @Given a struct instance, access fields using the . operator:

"= struct rec rl;
rl.1 = val;
« @Given a pointer to a struct:

= struct recx r = &rl;
r->1 = valy // or (*r).1 = val;

+ In assembly:

" Holds address of the first byte in register (Rb) or label
= Access fields with offsets (D)

struct rec {

int a[4];

long 1;

struct recx next;
} rl, *xr = &ril;

local struct
movslq %edi, %rdi
mov(q %rdi, —24(%rsp)

global struct rl
movslq %edi, %rdi
mov(q %rdi, rl+16(%rip)

9

L14: Structs and Alignment

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Struct Pointers

+ Pointers store addresses, which all “look” the same
= Lab 0 Example: struct instance Scores could be treated as array of ints of size 4

via pointer casting

= A struct pointer doesn’t have to point to a declared instance of that struct type

+ Different struct fields may or may not be meaningful, depending on what

the pointer points to
= This will be important for Lab 5!

int get_a3(struct recx r) {
return r->a[3];

}

Memory:

movl
ret

12 (%rdi), %eax

r+12

Ii—l .

"r—>a[3] n

10

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Polling Questions (1/2)

struct 1l _node {

long data;

struct ll_node* next;
} nl, n2;

+ How much space does (in bytes) does an instance of struct 11_node
take?

+» Which of the following statements are syntactically valid?
" nl.next = &n2;
= n2->data = 351;
" nl.next->data = 333;
" (&n2)->next->next.data = 451;

11

YA/ UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Lecture Outline (2/2)

% Structs and Typedefin C
+ Struct Layout and Alighment

12

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Structure Representation (Review)

struct rec { r
int a[4];
long 1;
struct rec* next; a 7 next
} st, *r = &st; 0 16 24 32

+ Structure represented as block of memory

" Each instance is a contiguously-allocated region of memory big enough to hold all
of the fields

+» Compiler determines overall size + positions of fields

" Fields ordered according to declaration order, even if another ordering would be
more compact

" Machine-level program has no understanding of the structures in the source code

13

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Alignment Principles (Review)

+ Primitive data type of size K bytes is considered aligned if its
address is a multiple of K
= Required on some machines; x86-64 hardware will work regardless
= Memory accessed by aligned chunks of bytes (see: caching and virtual memory)

- |nefficient to load or store value that crosses boundaries

+» Address bit interpretation of alignment:

1 char No restrictions
2 short Lowest bit must be zero: ...0,
4 1int, float Lowest 2 bits zero: ...00,

8 Tlong, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

14

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Structures & Alighment (Review)

+» Unaligned Data ARS8 o
char c;
c|l 4[0] i[1] Y, int i[2];
double v;
1 17 ’
P P* p+> p*3 P } st, *p = &st;

+ Aligned Data

" Primitive data type of size K bytes is considered aligned if its address is
a multiple of K

C 1[0] 1[1] Y

p+0 4 p+8 p+16 p+24
Multiple o Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

15

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Satisfying Alignment with Structures (1)

+» Within struct we must satisfy each element’s
alignment requirement

« QOverall structure placement has alignment
requirement K,

" Kmax = largest alignment of any field

+ Address of the struct must be a multiple of K4«

struct S1 {
char c;
int i[2];
double v;

} st, *p = &st;

1[0] i[1]

C
p+0
Mult
Multiple of 8

4

pleo

p+8
M

internal fragmentation

p+16

ultiple of 8

p+24

CSE351, Autumn 2025

16

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Satisfying Alignment with Structures (2)

+» Within struct we must satisfy each element’s [struct S2 {

alignment requirement

« QOverall structure placement has alignment 3

double v;

int i[2];
char c;

st, *p = &st;

requirement K,

" Kmax = largest alignment of any field

+ Overall structure size must be multiple of K.«

Vv i[0] i[1] |c
p+0 p+8 p+16 pt+24
Multiple of 8 external fragmentation Multiple of 8

CSE351, Autumn 2025

17

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Arrays of Structures

<« Overall str r i struct S2 {
Overall structure length multiple of K, 4, o
+ Satisfy alignment requirement for every i:t 10213
. char c;
element in array } a[10];
alo] al1] a[2] e o o
a+0 at+24 a+48 a+72

Y 1[0] 1[1] C

a+24 a+32 a+40 /‘ a+48

external fragmentation

CSE351, Autumn 2025

18

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment

Alignment of Structs Summary

+» Compiler will do the following:
1) Maintains declared ordering of fields in struct
2) Each field must be aligned within the struct to its K (may insert padding)

3) Overall struct size must be multiple of K,,,,,, (may insert padding)
4) When allocated, struct addresses will be aligned to K,,, ;.

+ C Notes:
" sizeof () can be used to get the overall size of structs
= offsetof () can be used to get field offsets within structs

19

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Struct Layout Example (Review)

K|struct frag {
71 char c; struct size = 32 R

1
L int i[3]; . |]
9| struct fragx p; internal fragmentation = 2
L| short s; external fragmentation = 4 £
} f, *'Fp = &-F;
Kmx:%
fp

P |/////(f i) | it (i l P ____M
;N ¢ 2q 26 5z

0)
L intermal edernal

20

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

" Rule of thumb: declare field in decreasing order of alignment requirement

struct S3 {
char c;
int 1;
char d;

b ost;

—

C 7

Y
12 bytes

struct S4 {
int 1i;
char c;
char d;

} ost;

CSE351, Autumn 2025

21

YA UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Autumn 2025

Polling Questions (2/2)

+» Minimize the size of the struct by re-ordering the fields:

struct old { struct new {
int 1; int 13

short s[3];

)
chars c: —> ;

float f;)
s b5

= What is the minimum size of struct new?
A. B. 24 bytes

C. 28 bytes D. 32 bytes

22

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Homework Setup (if time)

« Struct in a struct?

CSE351, Autumn 2025

" |t’s just another data type, with its own alignment requirement

= Example:

struct outer {

Fs

char c;

struct inner {
short s;
int i;

Foan;

struct inner {
short s;
int i;

b3

struct outer {
char c;
struct inner 1in;

}s

23

YA UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Autumn 2025

Summary

+» Alignment

= Data of alignment requirement (i.e., size) K is considered aligned if its address is a
multiple of K

= Arrays have alignment requirement of an individual element, not the total size

< Structures

= Allocate bytes for fields in order declared by programmer — can make choices to
minimize memory allocations

= Pad in middle to satisfy individual element alignment requirements (K)
- Internal fragmentation

= Pad at end to satisfy overall struct alignment requirement (K., ;)
- External fragmentation

24

	Slide 1: The Hardware/Software Interface Structs and Alignment
	Slide 2: Relevant Course Information
	Slide 3: Midterm Rooms and Sections
	Slide 4: Lecture Outline (1/2)
	Slide 5: Structs in C (Review)
	Slide 6: Struct Definitions (Review)
	Slide 7: Scope of Struct Definition (Review)
	Slide 8: Typedef in C (Review)
	Slide 9: Accessing Struct Fields (Review)
	Slide 10: Struct Pointers
	Slide 11: Polling Questions (1/2)
	Slide 12: Lecture Outline (2/2)
	Slide 13: Structure Representation (Review)
	Slide 14: Alignment Principles (Review)
	Slide 15: Structures & Alignment (Review)
	Slide 16: Satisfying Alignment with Structures (1)
	Slide 17: Satisfying Alignment with Structures (2)
	Slide 18: Arrays of Structures
	Slide 19: Alignment of Structs Summary
	Slide 20: Struct Layout Example (Review)
	Slide 21: How the Programmer Can Save Space
	Slide 22: Polling Questions (2/2)
	Slide 23: Homework Setup (if time)
	Slide 24: Summary

