YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

The Hardware/Software Interface

Procedures |

InStrUCtorS: Tl You Retweeted
. . Senior Oops Engineer @ReinH - Feb 28, 2019
J USt| N HS|a, Am be I H u & I am a full stack engineer which means if you give me one more task my

stack will overflow

Teaching Assistants: Q a2 QO 65K
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale

Violet Monserate

YA UNIVERSITY of WASHINGTON

Relevant Course Information

+» Lab 2 due next Friday (10/24)

" Can startin earnest after today’s lecture!

" See GDB Tutorial Lesson and and Phase 1 walkthrough in Section 4 Lesson

+» Midterm: 10/27, 5:30 pm in ARC 147, CSE2 G20, SIG 134
" You will be provided a fresh midterm reference sheet
" You get 1 handwritten, double-sided cheat sheet (letter-size)
" Form study groups and look at past exams!

CSE351, Autumn 2025

https://courses.cs.washington.edu/courses/cse351/25au/exams/ref-mt.pdf

YA UNIVERSITY of WASHINGTON L11: Procedures |

CSE351, Autumn 2025

House of Computing Check-In

«» Topic Group 2: Programs

= x86-64 Assembly, Procedures, Stacks,
Executables

+» How are programs created and executed
on a CPU?

" How does your source code become something
that your computer understands?

" How does the CPU organize and manipulate
local data?

/\

| Even more applications I
I I
I I

Applications

Programming Languages
& Libraries

Operating System

Hardware

Transistors, Gates, Digital Systems

Physics

YA UNIVERSITY of WASHINGTON

Mechanisms Required for Procedures

1) Passing
" To beginning of procedure code
= Back to return point
2) Passing data
" Procedure arguments & return value
3) Memory management
" Allocate during procedure execution
= Deallocate upon return
+» All implemented with machine instructions!

= An x86-64 procedure uses only those mechanisms
required for that procedure

P(..) {

y = Q(x);

int(y)
}

\

int Q(nt‘i) {
int _t\ = 3x*i;
int vﬁ;@];

return v[t];

CSE351, Autumn 2025

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Lecture Outline (1/4)

<+ Memory Layout
+ Stack Manipulation
+ X86-64 Procedure Calling Conventions

« Stack Frames

YA UNIVERSITY of WASHINGTON

L11: Procedures |

Simplified Memory Layout (Review)

High
Addresses

Memory
Addresses

Low
Addresses

AOXF..F

L0X0...0

Address Space:

Stack

Dynamic Data
(Heap)

Static Data

Literals

Instructions

What Goes Here:

Local variables and procedure context

Variables allocated with newormalloc

Static variables (including global variables)
Immutable literals/constants (e.g., "example")

Program code

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Memory Management

Address Space: How Managed:

High
Addresses 4AOXF..F

Stack “Automatically” by compiler/assembly

DTS DETE “Dynamically” by programmer

Memory (Heap)
Addresses
Static Data “Statically” at process start
Literals “Statically” at process start
Instructions “Statically” at process start
low | 0x0..0

Addresses

YA UNIVERSITY of WASHINGTON

Memory Permissions

High Address Space:

Addresses 4 OXF..F
Stack

Dynamic Data

Memory (Heap)
Addresses
Static Data
Literals

Instructions

Low 10x0..0

Addresses

L11: Procedures |

Permissions:

Writable; not executable

Writable; not executable

Writable; not executable

Read-only; not executable

Read-only; executable

CSE351, Autumn 2025

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Lecture Outline (2/4)

«+ Memory Layout
+» Stack Manipulation
+ X86-64 Procedure Calling Conventions

« Stack Frames

YA UNIVERSITY of WASHINGTON L11: Procedures |

x86-64 Stack (Review)

+ Region of memory managed
automatically via assembly instructions
" Grows toward lower addresses
® Customarily shown “upside-down”

+ Register %rsp is the stack pointer

= Contains the lowest stack address (top
element)

= Useful reference point — stack data accessed

via nonnegative offsets

- Example: 8 (%rsp) is 8 bytes from the top/end of
the stack

CSE351, Autumn 2025

High
Addresses

T Stack “Bottom”

Increasing
Addresses

Stack Grows
Down

e

Addresses Stack “Top”
0x00...00

%rsp

10

YA UNIVERSITY of WASHINGTON

L11: Procedures |

CSE351, Autumn 2025

x86-64 Stack: Add/Sub (Review) High

Addresses
Stack “Bottom”
+» The size of the stack can be directly T
manipulated Increasing
_ _ o _ Addresses
= Remember which direction is grow/shrink |
= Example: subq $8, %rsp
+» Doesn’t change the data on the stack
= Need specialized instructions to avoid separate |
instructions for (1) changing size and Stack Grows
(2) manipulating data Down . %rsp

Addresses Stack “Top”
0x00...00

11

YA UNIVERSITY of WASHINGTON L11: Procedures |

x86-64 Stack: Push (Review)

+ push_ src
1) Decrement %rsp by specified size

2) Store src operand value at %rsp’s address
- Operand can be Reg, Mem, or Imm

+» Example: pushq %rcx
= Decrement %rsp by 8 bytes

= Store copy of %rcx on the stack

CSE351, Autumn 2025

High
Addresses

T Stack “Bottom”

Increasing
Addresses

Stack Grows
Down

| =

Addresses Stack “Top”
0x00...00

%rsp

12

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

x86-64 Stack: Pop (Review) High

Addresses
Stack “Bottom”
2+ pOop_ dst T
1) Store value at address given by %rsp into dst Increasing
Addresses

- Operand can be Reg or Mem |

2) Increment %rsp by specified size

+» Example: popq %rcx
= Store copy of top 8 bytes of the stack into %rcx

Stack Grows

Down +3 M

1 f\ %rsp
f Those bits are still

Low there; we’re just

Addresses Stack ”Top” not using them.
0x00...00

" Increment %rsp by 8 bytes

13

YA UNIVERSITY of WASHINGTON

L11: Procedures |

Stack Manipulation Example

+ Using the stack for temporary space to swap %rcx and %rdx

"= Note: You wouldn’t want to do this because memory is slower than registers

swap_stackl:
subq $8, %rsp
movq %rcx, (%rsp)
movq %rdx, %rcx
movq (%rsp), %rdx
addq $8, %rsp

ret

swap_stack2:
pushq %rcx
movq %rdx, %rcx
popq %rdx
ret

Stack “Bottom”

Increasing
Addresses
| 351
o 333
70 I"Sp
Stack “Top”

CSE351, Autumn 2025

%rcx

%rdx

14

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2025

Polling Questions (1/3)

+ How does the stack change after executing the following instructions?
pushq %rbp

subq $0x18, %rsp

15

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Lecture Outline (3/4)

«+ Memory Layout
% Stack Manipulation
+» X86-64 Procedure Calling Conventions

« Stack Frames

16

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Calling Conventions (Review)

+ Set of rules to guarantee that procedures can pass control and
data to one another (i.e., where to leave and find things)

= Goal is to allow register and memory reuse without losing/corrupting data
" The procedure doing the calling is the
" The procedure being called is the

—>

Y

17

YA UNIVERSITY of WASHINGTON

Code Example: Preview

void multstore
(long x,
long t

long mult2 (long a, long b) {
long s
return s;

L11: Procedures |

Compiler Explorer: https://godbolt.org/z/TYG6x44Gs

long y, longx dst) {
mult2(x, y);

a * b;

OOOOOOOOOL40110e
40110e:
40110f:
401112:
401117:
40111a:
40111b:

0000000000401106 <mult2>:
%rdi,%rax
%rsi,%rax

401106:
401109:
401106d:

<mu1tstore>:

%rdx,%rbx
401106 <mult2>
%rax, (%rbx)

H R B R B K

imulqg

CSE351, Autumn 2025

save %rbx
save dst
mult2(x,y)
save at dst
restore %rbx
return

a
a * b
return

18

https://godbolt.org/z/TYG6x44Gs

YA UNIVERSITY of WASHINGTON L11: Procedures |

CSE351, Autumn 2025

Procedures: Passing Control (Review)

+ Return address indicates how to return to the
- can be invoked from multiple places in code

= Which address? |401112: call 401106 <mult2> | - nextinstruction

could be anything
401117: movq %rax, (%rbx) —

- Address of instruction immediately after the call instruction (0x401117)

» call Llabel — pass control to
1) Automatically push the return address onto the stack
2) Update the program counter (%rip) to the address of the specified label

+» ret —return control to

1) Automatically pop the return address off of the stack and then
2) Update the program counter (%rip) to the popped address

19

YA UNIVERSITY of WASHINGTON

L11: Procedures |

Procedure Call Example (Step 1)

POOOOOOOOO40110e <multstore>:

401112: call 401106 <mult2>
401117: movq %rax, (%rbx)

0000000000401106 <mult2>:
401106: movq %rdi,%rax

40110d: ret

Ox130

Stack
(Memory)

Registers

Ox401112

CSE351, Autumn 2025

20

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Procedure Call Example (Step 2)

Stack
(Memory)
OO00OOOONOO40110e <multstore>:
° °
401112: call 401106 <mult2> Ox 130 o
401117: movq %rax, (%rbx)
° Ox128 L
° 120
Ox118Ox401117

0000000000401106 <mult2>: Registers

401106: MR ord ’%rax y
70

40110d: ret %rip 10x401106

21

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Procedure Return Example (Step 1)

Stack
(Memory)
OO00OOOONOO40110e <multstore>:
° °
401112: call 401106 <mult2> Ox 130 o
401117: movq %rax, (%rbx)
° Ox128 L
° 120
Ox118YOx401117

OOOOOOONOEOA401106 <mult2>: Registers
401106: movq %rdi,%rax o
o /orSp

40110d: ret < %r1+p—0x40110d

22

YA UNIVERSITY of WASHINGTON

L11: Procedures |

Procedure Return Example (Step 2)

Stack
(Memory)
POOOOOONOOO40110e <multstore>:
¢ °
401112: call 401106 <mult2> Ox 130 o
401117: movq %rax, (%rbx)
° ®
OOOOOOONOEOA401106 <mult2>: Registers

401106: movq %rdi,%rax

40110d: ret %rip 1Ox401117

CSE351, Autumn 2025

23

YA/ UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Procedures: Passing Data (Review)

+ Registers (NOT in Memory) = Stack (Memory)
" First 6 arguments: _ Diane’s ™ Only allocate memory if needed

N silk High
- XX Addresses
R Dress t
Arg n
RSN costs d

T EE

[&] s
Arg 7 v
" Return value: _ ow
- Return pointer for anything >8 bytes wide Addresses

- Caller can directly use %rax after return

24

L11: Procedures | CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Code Example: Passing Data

void multstore
(long x, long y, long* dst) {
long t = mult2(x, vy);
*dst = t;

long mult2 (long a, long b) {
long s = a * b;
return s;

}

POOOOOOONOO40110e <multstore>:

x in %rdi, y in %rsi, dst in %rdx

40110f: movq %rdx,%rbx # save dst
401112: call 401106 <mult2> # mult2(x,y)
t in %rax

401117: movq %rax, (%rbx) # save at dst

O000000000401106 <mult2>:
a in %rdi, b in %rsi
401106: movq %rdi,%rax # a
401109: 1dmulq %rsi,%rax # a * b
s 1n %rax
40110d: ret # return

25

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2025

Polling Questions (2/3)

+ For the following function, which registers do we know must be used?

voidx memset(voidx ptr, 1int value, size_t num);

26

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Lecture Outline (4/4)

< Memory Layout
+ Stack Manipulation
% X86-64 Procedure Calling Conventions

« Stack Frames

27

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Stack Organization (Review)

+» Enables multiple instantiations of a procedure to be “running”
simultaneously

" Need some place to store state of each instantiation
" This makes recursion possible!

+ Stack discipline — how do we prevent bad things from happening?

" Observation #1: State for a given procedure only needed for a limited time

" Observation #2: always returns before does

+ Stack organized in conceptual units called stack frames

= Each stack frame contains the state for a single procedure instantiation

28

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L11: Procedures |

Stack Frames Example

Example
whoa (...) Call Chain
{ . whoa
* ho (.. '
WhO(); V.{\:IO() WhO\
- am(); am1 (...) amI amI
amI(); t . '
. PF () { aml
} amI() |
¥ aml
}

Procedure amI is conditionally
recursive (calls itself)

29

YA UNIVERSITY of WASHINGTON L11: Procedures |

Stack Frame Management

<« Contents

= All necessary local context — we’ll see details later
= Size will vary based on procedure specifics

- Showing same size in this example, but not usually the case

< Management

= Space gets allocated as procedure executes
= Space must get deallocated by the time it returns

+ Reference points

= Stack pointer (%rsp) indicates the top of the stack and current frame
= Frame pointer (%rbp) may indicate the “start”/“bottom” of current frame

- Less commonly used this way in x86-64

whoa

who

aml

CSE351, Autumn 2025

30

YA/ UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

1) Call to whoa

Stack
whoa (...) whoa
{ v
° WhO
l who () ; at};I\arAnI
} an;I
am

31

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L11: Procedures |

2) Call to who

Stack
whoa (...) whoa
{ |who(...) !
{ who\
»' ! whoa
amI(); amI amI
* %rbp——m
I(): |
; z.am () o who
1 %rsp————
aml

32

YA/ UNIVERSITY of WASHINGTON

3) Call to amI (15)

whoa (...)

{

L11: Procedures |

Stack

"\\\\ whoa

%rbp———>

aml
%rsp———m0

CSE351, Autumn 2025

33

YA/ UNIVERSITY of WASHINGTON

L11: Procedures |

4) Recursive call to amI (2"9)

whoa (...)

{

whoa
who\

aml aml

aml

aml

%rbp——

%rsp————

Stack

CSE351, Autumn 2025

34

YA/ UNIVERSITY of WASHINGTON

L11: Procedures |

5) Another recursive call to amI (3")

whoa (...)

{

Stack
whoa
who
! \ whoa
aml aml
aml
aml

%rbp——>

%rsp————

CSE351, Autumn 2025

35

YA UNIVERSITY of WASHINGTON

CSE351, Autumn 2025

6) Return from another recursive call to amI (3")

Stack
whoa (...) whoa
{ |who (.. H
{ |amI(..) Whe
{ |amI(..) "\\\\ whoa
{ amIl aml
if(){ M who
} 1 aml
amI()
t
ndt BB
. ° amI amIl
%rbp——m
amI,
%rsp———

36

YA UNIVERSITY of WASHINGTON

CSE351, Autumn 2025

7) Return from recursive call to amI (2"9)

Stack
whoa (...) whoa
{ WhO(...) I‘«;
{ |amI(..) who
{ ! \ whoa
* aml aml
if(){ I
}»} amt () amI who
b . I %rbp——m
} amI amlL,
%rsp——

37

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L11: Procedures |

8) Return from call to amI (1%

Stack
whoa (...) whoa
{ |who(...) !
{ who\
y ! whoa
amI(); amI amI
»° | %rbp——
I(): |
; e.am () o who
1 N %rsp————
aml

38

YA UNIVERSITY of WASHINGTON

9) Second call to amI (4th)

whoa (...)

{ |who (..

{

¥ }

{ |amI(..)

»1'1:(){

amI ()

whoa

l

who

I\

aml

I

aml

I

aml

Stack

whoa

who

%rbp———>

%rsp——

amlL,

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

{

whoa (...)

who (...)

{

—=p

)

amI();

amI();

10) Return from second call to amI (4t")

whoa

l

who

N

aml

!

aml

I

aml

CSE351, Autumn 2025

Stack

s%rbp———

%rsp————

YA/ UNIVERSITY of WASHINGTON

L11: Procedures |

11) Return from call to who

whoa (...)

whoa
who

aml aml

aml

aml

Stack

CSE351, Autumn 2025

41

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Polling Questions (3/3)

+» Answer the following questions about when main () is run (assume x
and y stored on the Stack):

int main() { int randSum(int n) {
int i, x = 0; int y = rand()%20;
for (i=0;1<3;1++) return n+y;
X = randSum(x) ; }
printf("x = %d\n",x);
return 0;
ks

= Higher/larger address: X ory?

" How many total stack frames
are created?

= What is the maximum depth
(# of frames) of the Stack? A. B. 2 C.3 D. 4

42

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

Aside: Stack Overflow

+ When the stack pointer exceeds the stack bounds (segmentation fault)
" |n theory: when it collides with the Heap
® |n x86-64 Linux, when it exceeds 8 MiB limit

+» Causes?
" |nfinite/deep recursion
= Very large local variables

+ Fixes?
= Use iterative solution, compiler tail-call optimization
= Allocate large variables elsewhere (more on the Heap later this quarter)

43

YA UNIVERSITY of WASHINGTON

Summary (1/3)

+» Memory is organized into
5 segments based on data
declaration and lifetime

" Goals: maximize use of space,
manage data differently, apply
separate permissions

+» A segmentation fault is caused
by an impermissible memory
access

L11: Procedures |

High

Addresses A

Low

Address Space:

Stack

A\ 4

a

Dynamic Data
(Heap)

Static Data

Literals

Addresses =

Instructions

Local variables and
procedure context

Variables allocated
with new or malloc

Static variables
(e.g., global variables)

Immutable literals
(e.g., "example")

Program code

CSE351, Autumn 2025

Writable;
not executable

Writable;
not executable

Writable;
not executable

Read-only;
not executable

Read-only;
executable

44

YA UNIVERSITY of WASHINGTON L11: Procedures |

CSE351, Autumn 2025

Summary (2/3)
Stack “Bottom”
+ The Stack is the memory segment with the Higher
highest addresses and grows downward Addresses
= Stack “top” (lowest address) is defined add
by the value of the stack pointer (%rsp) Lower t ﬁgfz
= Can manipulate using add, sub, push, and pop Addresses —%rsp
Stack “Top”
l sub
push
+ Procedure calling conventions for passing control and data call

= call and ret pass control using %r-ip and a return address on the stack
= Return value: %rax, Arguments: %rdi, %rsi, %rdx, %rcx, %r8, %r9, Stack

45

YA UNIVERSITY of WASHINGTON L11: Procedures |

Summary (3/3)

+ Stack organized into stack frames
that hold a procedure instance’s data
= Size will vary based on procedure specifics

= Space gets allocated as procedure executes,
deallocated by the time it returns

whoa

who

I \ %rbp——m

aml

aml

aml

aml 0~

%rsp——

CSE351, Autumn 2025

Stack

whoa

46

YA UNIVERSITY of WASHINGTON L11: Procedures | CSE351, Autumn 2025

: This is extra
Bonus: x86-64 Linux Memory Layout {(non_testable,]
OXOOOO7FFFFFFFFFFF material
Stack
+ Stack 1
" Runtime stack has 8 MiB limit
«» Heap Heap
= Dynamically allocated as needed
" malloc(), calloc(), new, ... v
<+ Statically allocated data (Data) SErE
Libraries
= Read-only: string literals
= Read/write: global arrays and variables
: . %
+» Code / Shared Libraries ;
eap
= Executable machine instructions
Data
" Read-only Instructions
Hex Address OXx400000

OX000000 47

	Slide 1: The Hardware/Software Interface Procedures I
	Slide 2: Relevant Course Information
	Slide 3: House of Computing Check-In
	Slide 4: Mechanisms Required for Procedures
	Slide 5: Lecture Outline (1/4)
	Slide 6: Simplified Memory Layout (Review)
	Slide 7: Memory Management
	Slide 8: Memory Permissions
	Slide 9: Lecture Outline (2/4)
	Slide 10: x86-64 Stack (Review)
	Slide 11: x86-64 Stack: Add/Sub (Review)
	Slide 12: x86-64 Stack: Push (Review)
	Slide 13: x86-64 Stack: Pop (Review)
	Slide 14: Stack Manipulation Example
	Slide 15: Polling Questions (1/3)
	Slide 16: Lecture Outline (3/4)
	Slide 17: Calling Conventions (Review)
	Slide 18: Code Example: Preview
	Slide 19: Procedures: Passing Control (Review)
	Slide 20: Procedure Call Example (Step 1)
	Slide 21: Procedure Call Example (Step 2)
	Slide 22: Procedure Return Example (Step 1)
	Slide 23: Procedure Return Example (Step 2)
	Slide 24: Procedures: Passing Data (Review)
	Slide 25: Code Example: Passing Data
	Slide 26: Polling Questions (2/3)
	Slide 27: Lecture Outline (4/4)
	Slide 28: Stack Organization (Review)
	Slide 29: Stack Frames Example
	Slide 30: Stack Frame Management
	Slide 31: 1) Call to whoa
	Slide 32: 2) Call to who
	Slide 33: 3) Call to amI (1st)
	Slide 34: 4) Recursive call to amI (2nd)
	Slide 35: 5) Another recursive call to amI (3rd)
	Slide 36: 6) Return from another recursive call to amI (3rd)
	Slide 37: 7) Return from recursive call to amI (2nd)
	Slide 38: 8) Return from call to amI (1st)
	Slide 39: 9) Second call to amI (4th)
	Slide 40: 10) Return from second call to amI (4th)
	Slide 41: 11) Return from call to who
	Slide 42: Polling Questions (3/3)
	Slide 43: Aside: Stack Overflow
	Slide 44: Summary (1/3)
	Slide 45: Summary (2/3)
	Slide 46: Summary (3/3)
	Slide 47: Bonus: x86-64 Linux Memory Layout

