
CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

The Hardware/Software Interface
x86-64 Programming III

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate http://xkcd.com/1652/

http://xkcd.com/1652/

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Relevant Course Information

❖ Lab submissions that fail the autograder get a ZERO

▪ No excuses – make full use of tools & Gradescope’s interface

▪ Leeway on Lab 1a won’t be given moving forward

❖ Lab 2 (x86-64) released Wednesday

▪ Learn to trace x86-64 assembly and use GDB

❖ Midterm is in two weeks (10/27, 5:30pm, location dependent on section)

▪ No lecture that day

▪ You will be provided a fresh midterm reference sheet
• Study and use this NOW so you are comfortable with it when the exam comes around

▪ Form study groups and look at past exams!
2

https://courses.cs.washington.edu/courses/cse351/25au/exams/ref-mt.pdf

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Lab Extra Credit

❖ Lab 2 and several other labs have “extra credit”

▪ These are meant to be fun extensions to the labs – you are not expected to
attempt these extra components

❖ Extra credit points don't affect your lab grades

▪ From the course policies: “These will be accumulated over the course and may be
used to bump up borderline grades at the end of the quarter at the discretion of
the instructor(s).”

▪ Make sure you finish the rest of the lab before attempting any extra credit

3

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Lecture Outline (1/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited

4

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Control Flow (1/2)

5

long max(long x, long y) {
 long max;
 if (x > y) {
 max = x;
 } else {
 max = y;
 }
 return max;
}

max:
 ???
 movq %rdi, %rax
 ???
 ???
 movq %rsi, %rax
 ???
 ret

Variable Register

x %rdi

y %rsi

return value %rax

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Control Flow (2/2)

6

long max(long x, long y) {
 long max;
 if (x > y) {
 max = x;
 } else {
 max = y;
 }
 return max;
}

max:
 if x <= y then jump to else
 movq %rdi, %rax
 jump to done
else:
 movq %rsi, %rax
done:
 ret

Conditional jump

Unconditional jump

Variable Register

x %rdi

y %rsi

return value %rax

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Conditionals and Control Flow

❖ Conditional jump: Jump to somewhere else if some condition
is true, otherwise execute next instruction

❖ Unconditional jump: Always jump when you get to this instruction

❖ With just these two types of jumps, we can implement most control flow
constructs in higher-level languages:

▪ if (condition) then {…} else {…}

▪ while (condition) {…}

▪ do {…} while (condition)

▪ for (initialization; condition; iterative) {…}

▪ switch {…}

7

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Lecture Outline (2/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited

8

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Processor State (x86-64, partial)

❖ Information about currently
executing program

▪ Temporary data
(%rax, …)

▪ Location of runtime stack (%rsp)

▪ Location of current code control
point
(%rip, …)

▪ Status of recent tests
(CF, ZF, SF, OF)
• Single bit registers:

9

%rip Program Counter
(instruction pointer)

CF ZF SF OF Condition Codes

Registers

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Condition Codes (Review)

❖ Condition codes are set based on the result of the previous
instruction(s)

▪ These are automatically updated by your CPU as instructions are executed

▪ Some instructions don’t affect the condition codes (e.g., mov, ret, lea)

❖ Carry: CF=1 if result had unsigned overflow

❖ Zero: ZF=1 if result was 0

❖ Sign: SF=1 if result was negative (i.e., same as sign bit)

❖ Overflow: OF=1 if result had signed overflow

10

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Implicit Setting (Review)

❖ Implicitly set by arithmetic and logical operations as side effect

▪ Notable exception: lea (beware!)

❖ Example: %al=0x80, execute addb %al, %al

11

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Explicit Setting (Review)

❖ Explicitly set by cmp and test, whose purposes are to change
the condition codes without storing their results

▪ cmp is equivalent result to sub (-); test is equivalent result to and (&)

❖ Example: %al=0x83 and %bl=0x8C, execute testb %al, %bl

12

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Lecture Outline (3/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited

13

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Jump and Set Families (Review)

❖ j* target

▪ Jumps to target (an address) based on condition codes

❖ set* dst

▪ Set low-order byte of dst to 0x00 or 0x01 based on condition codes and does not
alter remaining 7 bytes

❖ Typically come as the second in a pair of instructions:

1) Set the condition codes

2) Uses the condition codes to do something

14

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Instruction Condition Table (Review)

❖ j*/set* Instructions – focus on description, not formula

15

Jump Instr Set Instr Condition Description

jmp target n/a 1 Unconditional

je target sete dst ZF Equal to 0

jne target setne dst ~ZF Not Equal to 0

js target sets dst SF Signed/Negative

jns target setns dst ~SF Not Signed/Nonnegative

jg target setg dst ~(SF^OF)&~ZF Greater Than 0 (Signed)

jge target setge dst ~(SF^OF) Greater Than or Equal to 0 (Signed)

jl target setl dst (SF^OF) Less Than 0 (Signed)

jle target setle dst (SF^OF)|ZF Less Than or Equal to 0 (Signed)

ja target seta dst ~CF&~ZF Above 0 (unsigned “>”)

jb target setb dst CF Below 0 (unsigned “<“)

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Choosing Instruction Pairs

❖ Find correct form of condition in table, use corresponding instrs

▪ Instruction #1 = chosen operation, Instruction #2 = row heading

▪ Recall: cmp performs sub
 test performs and

❖ Examples:
▪ x >= y → x – y >= 0
 → cmp y, x
 jge target

▪ x == 3 → x – 3 == 0
 cmp 3, x
 je target

▪ x → x & x != 0
 test x, x
 jne target

16

(op) s, d

je /sete “Equal” d (op) s == 0

jne/setne “Not equal” d (op) s != 0

js /sets “Signed” (negative) d (op) s < 0

jns/setns “Not signed” (nonnegative) d (op) s >= 0

jg /setg “Greater” d (op) s > 0

jge/setge “Greater or equal” d (op) s >= 0

jl /setl “Less” d (op) s < 0

jle/setle ”Less or equal” d (op) s <= 0

ja /seta “Above” (unsigned >) d (op) s > 0U

jb /setb “Below” (unsigned <) d (op) s < 0U

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Set Example

▪ %al is lowest byte of %rax

▪ Uses movz to finish job, since set* only changes lowest byte of register

17

int gt(long x, long y) {
 return x > y;
}

cmpq %rsi, %rdi # set flags on x - y
setg %al # %al = (x-y>0)
movzbl %al, %eax # %rax = (x>y)
ret

Variable Register

x %rdi

y %rsi

return value %rax

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Labels (Review)

❖ A jump changes the program counter (%rip)

▪ %rip tells the CPU the address of the next instruction to execute

❖ Labels give us a way to refer to a specific instruction in our assembly/machine
code

▪ Associated with the next instruction found in the assembly code (ignores whitespace)

▪ Each use of the label will eventually be replaced with something that indicates the final
address of the instruction that it is associated with

18

swap:
 movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

max:
 movq %rdi, %rax
 cmpq %rsi, %rdi
 jg done
 movq %rsi, %rax
done:
 ret

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Jump Example (Writing)

19

if (x < 3) {
 return 1;
}
return 2;

T1:
 movq $1, %rax
 ret
T2:
 movq $2, %rax
 ret

cmpq $3, %rdi
 jge T2

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0

jne “Not equal” b-a != 0 b&a != 0

js “Signed” (negative) b-a < 0 b&a < 0

jns “Not signed” (nonnegative) b-a >= 0 b&a >= 0

jg “Greater” b-a > 0 b&a > 0

jge “Greater or equal” b-a >= 0 b&a >= 0

jl “Less” b-a < 0 b&a < 0

jle ”Less or equal” b-a < 0 b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

Variable Register

x %rdi

return value %rax

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Jump Example (Reading)

20

int mystery(int x) {
 if () {

 } else {

 }
}

mystery:
 movl %edi, %eax
 testl %edi, %edi
 js .L3
.L2: ret
.L3: negl %eax
 jmp .L2

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0

jne “Not equal” b-a != 0 b&a != 0

js “Signed” (negative) b-a < 0 b&a < 0

jns “Not signed” (nonnegative) b-a >= 0 b&a >= 0

jg “Greater” b-a > 0 b&a > 0

jge “Greater or equal” b-a >= 0 b&a >= 0

jl “Less” b-a < 0 b&a < 0

jle ”Less or equal” b-a < 0 b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

Variable Register

x %edi

return value %eax

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Polling Question

A. cmpq %rsi, %rdi
 jle .L4

B. cmpq %rsi, %rdi
 jg .L4

C. testq %rsi, %rdi
 jle .L4

D. testq %rsi, %rdi
 jg .L4

21

long absdiff(long x, long y) {
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

absdiff:

 # x > y:
 movq %rdi, %rax
 subq %rsi, %rax
 ret
.L4: # x <= y:
 movq %rsi, %rax
 subq %rdi, %rax
 ret

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Lecture Outline (4/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited

22

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Instruction Set Philosophies, Revisited

❖ Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

▪ Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

❖ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

▪ Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

❖ How different are these two philosophies, really?

23

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Instruction Set Philosophies, Revisited

❖ Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

▪ Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

❖ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

▪ Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

❖ How different are these two philosophies, really?

▪ Both pursue efficiency (minimalism is a means to an end)
24

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Exceedingly Dominant ISAsMainstream ISAs, Revisited

25

Windows desktop/laptops
(Core i3, i5, i7, Ryzen)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, Android, Raspberry Pi)
Apple products (ca. 2020-)
(Macbook, Mac Mini)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

Does anything
feel “off” about
this landscape?

http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Tech Monopolization (Oligopolization)

❖ How many “dominant” ISAs are there?

▪ 2: x86, ARM

❖ How many “dominant” phone brands are there?

▪ 3: Samsung, Apple, Xiaomi

❖ How many “dominant” operating systems are there?

▪ 3-ish: Windows, iOS/macOS, Android/Linux

❖ How many “dominant” chip manufacturers are there?

▪ 3: TSMC, Samsung, Intel

❖ It wasn’t always this way!

▪ Combination of antitrust policies and (lack of) enforcement
26

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ How do you feel about tech oligopolization?

▪ What are the benefits and disadvantages of this landscape for
(1) the dominant companies and (2) the consumers?

▪ These big tech companies are now worth billions of dollars. What might we try if
we wanted to break up the oligopolization?

27

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Summary (1/2)

❖ Control flow in x86 determined by Condition Codes

▪ Showed Carry, Zero, Sign, and Overflow, though others exist

▪ Set flags with arithmetic & logical instructions (implicit) or Compare/Test (explicit)

▪ Set instructions (set*)
read out flag values (0/1)

▪ Jump instructions (j*)
use flag values to determine
next instruction to execute

▪ Result of 1st instruction
gets compared against 0
in a way determined
by 2nd instruction:

(op) s, d cmp a, b test a, b

je sete “Equal” d (op) s == 0 b-a == 0 b&a == 0

jne setne “Not equal” d (op) s != 0 b-a != 0 b&a != 0

js sets “Signed” (negative) d (op) s < 0 b-a < 0 b&a < 0

jns setns “Not signed” (nonnegative) d (op) s >= 0 b-a >= 0 b&a >= 0

jg setg “Greater” d (op) s > 0 b-a > 0 b&a > 0

jge setge “Greater or equal” d (op) s >= 0 b-a >= 0 b&a >= 0

jl setl “Less” d (op) s < 0 b-a < 0 b&a < 0

jle setle ”Less or equal” d (op) s <= 0 b-a < 0 b&a <= 0

ja seta “Above” (unsigned >) d (op) s > 0U b >U a b&a > 0U

jb setb “Below” (unsigned <) d (op) s < 0U b <U a b&a < 0U

https://en.wikipedia.org/wiki/Status_register#Common_flags

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Summary (2/2)

❖ Labels (e.g., main, .L0) refer to an instruction address and used as
jump targets in assembly

CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Bonus: Compound Conditional Example

30

cmpq $2, %rdi

 setle %dl

 cmpq %rsi, %rdi

 sete %al

 testb %al, %dl

 je T2

T1: # x <= 2 && x == y:

 movl $1, %eax

 ret

T2: # else

 movl $2, %eax

 ret

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0

jne “Not equal” b-a != 0 b&a != 0

js “Signed” (negative) b-a < 0 b&a < 0

jns “Not signed” (nonnegative) b-a >= 0 b&a >= 0

jg “Greater” b-a > 0 b&a > 0

jge “Greater or equal” b-a >= 0 b&a >= 0

jl “Less” b-a < 0 b&a < 0

jle ”Less or equal” b-a < 0 b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

if (x < 3 && x == y) {
 return 1;
} else {
 return 2;
}

Variable Register

x %rdi

y %rsi

return value %rax

	Slide 1: The Hardware/Software Interface x86-64 Programming III
	Slide 2: Relevant Course Information
	Slide 3: Lab Extra Credit
	Slide 4: Lecture Outline (1/4)
	Slide 5: Control Flow (1/2)
	Slide 6: Control Flow (2/2)
	Slide 7: Conditionals and Control Flow
	Slide 8: Lecture Outline (2/4)
	Slide 9: Processor State (x86-64, partial)
	Slide 10: Condition Codes (Review)
	Slide 11: Implicit Setting (Review)
	Slide 12: Explicit Setting (Review)
	Slide 13: Lecture Outline (3/4)
	Slide 14: Jump and Set Families (Review)
	Slide 15: Instruction Condition Table (Review)
	Slide 16: Choosing Instruction Pairs
	Slide 17: Set Example
	Slide 18: Labels (Review)
	Slide 19: Jump Example (Writing)
	Slide 20: Jump Example (Reading)
	Slide 21: Polling Question
	Slide 22: Lecture Outline (4/4)
	Slide 23: Instruction Set Philosophies, Revisited
	Slide 24: Instruction Set Philosophies, Revisited
	Slide 25: Mainstream ISAs, Revisited
	Slide 26: Tech Monopolization (Oligopolization)
	Slide 27: Discussion Questions
	Slide 28: Summary (1/2)
	Slide 29: Summary (2/2)
	Slide 30: Bonus: Compound Conditional Example

