The Hardware/Software Interface

x86-64 Programming III

Instructors:

Amber Hu, Justin Hsia

Teaching Assistants:

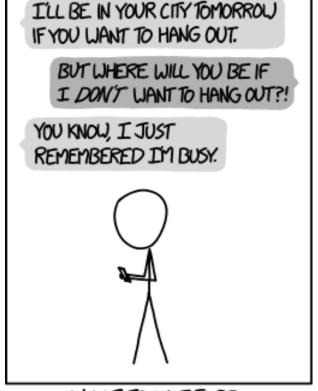
Anthony Mangus Divya Ramu

Grace Zhou Jessie Sun

Jiuyang Lyu Kanishka Singh

Kurt Gu Liander Rainbolt

Mendel Carroll Ming Yan


Naama Amiel Pollux Chen

Rose Maresh Soham Bhosale

Violet Monserate

We waited 24 Years
nu for this!

WHY I TRY NOT TO BE PEDANTIC ABOUT CONDITIONALS.

http://xkcd.com/1652/

Relevant Course Information

- Lab submissions that fail the autograder get a ZERO
 - No excuses make full use of tools & Gradescope's interface
 - Leeway on Lab 1a won't be given moving forward
- Lab 2 (x86-64) released Wednesday
 - Learn to trace x86-64 assembly and use GDB
- Midterm is in two weeks (10/27, 5:30pm, <u>location dependent on section</u>)
 - No lecture that day
 - You will be provided a fresh <u>midterm reference sheet</u>
 - Study and use this NOW so you are comfortable with it when the exam comes around
 - Form study groups and look at past exams!

Lab Extra Credit

- Lab 2 and several other labs have "extra credit"
 - These are meant to be fun extensions to the labs you are not expected to attempt these extra components
- Extra credit points don't affect your lab grades
 - From the course policies: "These will be accumulated over the course and may be used to bump up borderline grades at the end of the quarter at the discretion of the instructor(s)."
 - Make sure you finish the rest of the lab before attempting any extra credit

Lecture Outline (1/4)

- Control Flow
- Condition Codes
- Conditionals
- Instruction Set Philosophies, Revisited

Control Flow (1/2)

```
long max(long x, long y) {
 long max;
                                       max:
  if (x > y) {
                                         ???
                                               %rdi, %rax#fax
                                         movq
   max = x;
 } else {
                                         ???
                                         ???
    max = y;__
                                               %rsi, %rax#elx (se
                                         movq
  return max;
                                         ???
                                         ret
```

Variable	Register
X	%rdi
У	%rsi
return value	%rax

Control Flow (2/2)

```
long max(long x, long y) {
  long max;
                                          max:
                                           if x \leq y then jump to else
                        Conditional jump
  if (x > y) {
                                          >> movq %rdi, %rax
    max = x;
                        Unconditional jump > jump to done
  } else {
                                         Telse:
    max = y;
                                            movq %rsi, %rax <
  return max;
                                         >done:
                                         > ret
```

Variable	Register
X	%rdi
У	%rsi
return value	%rax

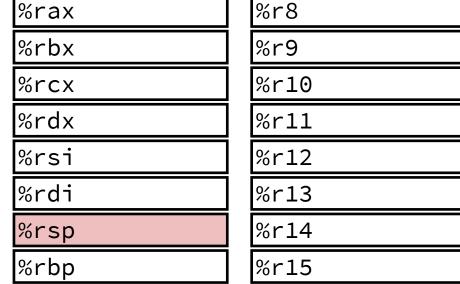
Conditionals and Control Flow

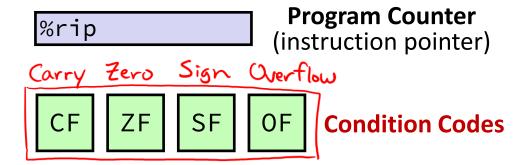
- Conditional jump: Jump to somewhere else if some condition is true, otherwise execute next instruction
- Unconditional jump: Always jump when you get to this instruction
- With just these two types of jumps, we can implement most control flow constructs in higher-level languages:
 - if (condition) then {...} else {...}
 - while (condition) {...}
 - do {...} while (condition)
 - **for** (initialization; condition; iterative) {...}
 - **■** switch {...}

Lecture Outline (2/4)

- Control Flow
- Condition Codes
- Conditionals
- Instruction Set Philosophies, Revisited

Processor State (x86-64, partial)


- Information about currently executing program
 - Temporary data (%rax, ...)
 - Location of runtime stack (%rsp)
 - Location of current code control point (%rip, ...)


Status of recent tests (CF, ZF, SF, OF)

• Single bit registers:

"flags"

Registers

Condition Codes (Review)

- Condition codes are set based on the result of the previous instruction(s)
 - These are automatically updated by your CPU as instructions are executed
 - Some instructions don't affect the condition codes (e.g., mov, ret, lea)

Carry: CF=1 if result had unsigned overflow

 \star **Zero: ZF=1** if result was 0

❖ Sign: SF=1 if result was negative (i.e., same as sign bit)


Overflow: OF=1 if result had signed overflow

Implicit Setting (Review)

- Implicitly set by arithmetic and logical operations as side effect
 - Notable exception: lea (beware! (2))
- * Example: %al=0x80, execute addb %al, %al

 compute: Ob 1000 0000

 + 0b 1000 0000 $CF = 1 \quad (carry out from MSB)$ $ZF = 1 \quad (==0)$ Stores OxOD = 3 al $OF = 1 \quad (Oxer) = (Oxer)$

Explicit Setting (Review)

- Explicitly set by cmp and test, whose purposes are to change the condition codes without storing their results
 - cmp is equivalent result to sub (-); test is equivalent result to and (&)
- ★ Example: %al=0x83 and %bl=0x8C, execute testb %al, %bl

compute:
$$0b 1000 0011$$

& $0b 1000 1100$
 $CF = 0 \quad (no carryout)$
 $ZF = 0 \quad (!=0)$

result is 0×80 , \Rightarrow $SF = 1 \quad (MSB is 1)$

but % bl is unchanged!

 $OF = 0 \quad (no overflow)$

Lecture Outline (3/4)

- Control Flow
- Condition Codes
- Conditionals
- Instruction Set Philosophies, Revisited

Jump and Set Families (Review)

- * j* target
 - Jumps to target (an address) based on condition codes
- * set* dst
 - Set low-order byte of dst to 0x00 or 0x01 based on condition codes and does not alter remaining 7 bytes
- Typically come as the second in a pair of instructions:
 - 1) Set the condition codes
 - 2) Uses the condition codes to do something

Instruction Condition Table (Review)

* j*/set* Instructions – focus on description, not formula

Jump Instr	Set Instr	Condition	Description	
jmp target	n/a	n/a Unconditional		
je target	sete dst	ZF	Equal to 0	
jne target	setne dst	setne dst / ~ZF Not Equal to 0		
js target	sets dst	SF	Signed/Negative	
jns target	setns dst	~SF	Not Signed/Nonnegative	
jg target	setg dst	~(SF^OF)&~ZF	Greater Than 0 (Signed)	
jge target	setge dst	~(SF^OF)	Greater Than or Equal to 0 (Signed)	
jl target	l target setl dst (SF^OF)		Less Than 0 (Signed)	
jle target	arget setle dst (SF^OF) ZF /		Less Than or Equal to 0 (Signed)	
ja target	seta dst	~CF&~ZF	Above 0 (unsigned ">")	
jb target	setb dst	CE	Below 0 (unsigned "<")	

Choosing Instruction Pairs

- Find correct form of condition in table, use corresponding instrs
 - Instruction #1 = chosen operation, Instruction #2 = row heading
 - Recall: cmp performs sub test performs and
- Examples:

■
$$x >= y \rightarrow x - y >= 0$$

→ cmp y , x

jge target

■
$$x == 3 \rightarrow x - 3 == 0$$

cmp 3, x
je target

•
$$x \rightarrow x & x != 0$$
test x, x

jne target

		(op) s, d
je /sete	"Equal"	d (op) s == 0
<pre>jne/setne</pre>	"Not equal"	d (op) s != 0
js /sets	"Signed" (negative)	d (op) s < 0
jns/setns	"Not signed" (nonnegative)	d (op) s >= 0
<pre>jg /setg</pre>	"Greater"	d (op) s > 0
jge/setge	"Greater or equal"	d (op) s >= 0
jl /setl	"Less"	d (op) s < 0
jle/setle	"Less or equal"	d (op) s <= 0
ja /seta	"Above" (unsigned >)	d (op) s > 0U
jb /setb	"Below" (unsigned <)	d (op) s < 0U

Set Example

```
int gt(long x, long y) {
  return x > y;
}
```

Variable	Register
Х	%rdi
У	%rsi
return value	%rax

```
cmp y, x -> cmp &rsi, % rdi
set g _ -> setg % al
```

- %al is lowest byte of %rax
- Uses movz to finish job, since set* only changes lowest byte of register

Labels (Review)

```
swap:
    movq (%rdi), %rax
    movq (%rsi), %rdx
    movq %rdx, (%rdi)
    movq %rax, (%rsi)
    ret
```

```
max:
    movq %rdi, %rax
    cmpq %rsi, %rdi
    jg done
    movq %rsi, %rax
done:
    ret
```

- A jump changes the program counter (%rip)
 - %rip tells the CPU the address of the next instruction to execute
- Labels give us a way to refer to a specific instruction in our assembly/machine code
 - Associated with the next instruction found in the assembly code (ignores whitespace)
 - Each use of the label will eventually be replaced with something that indicates the final address of the instruction that it is associated with

Jump Example (Writing)

```
if (x < 3) {
    return 1;
}
return 2;</pre>
```

Variable	Register
X	%rdi
return value	%rax

```
cmpq $3, %rdi
jge T2
T1: # x 4 3
    movq $1, %rax
    ret
T2: # !(x 4 3)
    movq $2, %rax
    ret
ret
```

	Z	_
	🗇 cmp a, b	test a, b
"Equal"	b-a == 0	b&a == 0
"Not equal"	b-a != 0	b&a != 0
"Signed" (negative)	b-a < 0	b&a < 0
"Not signed" (nonnegative)	b-a >= 0	b&a >= 0
"Greater"	b-a > 0 /	b&a > 0
Greater or equal"	b-a >= 0	b&a >= 0
"Less"	b-a < 0	b&a < 0
"Less or equal"	b-a < 0	b&a <= 0
"Above" (unsigned >)	b > _U a	b&a > 0U
"Below" (unsigned <)	b < _u a	b&a < 0U
•	"Not equal" "Signed" (negative) "Not signed" (nonnegative) "Greater" "Greater or equal" "Less" "Less or equal" "Above" (unsigned >)	"Equal" "Not equal" "Signed" (negative) "Not signed" (nonnegative) "Greater" "Less" "Less or equal" "Above" (unsigned >) "Comp a, b b-a = 0 b-a = 0 b-a != 0 b-a < 0 b-a >= 0 b-a > 0 b-a > 0 b-a < 0 continued = 0 b-a < 0 b-a < 0 continued = 0 b-a < 0 b-a < 0 continued = 0 continued = 0 b-a < 0 b-a < 0 continued = 0 continued = 0 b-a < 0 b-a < 0 continued = 0 c

Jump Example (Reading)

```
mystery:

movl %edi, %eax # ret = x

testl %edi, %edi # x x

js False .L3 True # jump f x <

.L2: ret a

negl %eax # negate x

jmp .L2
```

Variable	Register
X	%edi
Oreturn value	%eax

<pre>int mystery(int</pre>	x)	{
if (⋆ < ᠔)	{	
return -x;		
} else {		
return x;		
}		
}		

		cmp a, b	test a, b
je	"Equal"	b-a == 0	b&a == 0
jne	"Not equal"	b-a != 0	b&a != 0
js	"Signed" (negative)	b-a < 0	b&a < 0
jns	"Not signed" (nonnegative)	b-a >= 0	b&a >= 0
jg	"Greater"	b-a > 0	b&a > 0
jge	"Greater or equal"	b-a >= 0	b&a >= 0
jl	"Less"	b-a < 0	b&a < 0
jle	"Less or equal"	b-a < 0	b&a <= 0
ja	"Above" (unsigned >)	b > _u a	b&a > 0U
jb	"Below" (unsigned <)	b < _u a	b&a < 0U

Polling Question

Register	Use(s)	
%rdi	1 st argument (x)	
%rsi	2 nd argument (y)	
%rax	return value	

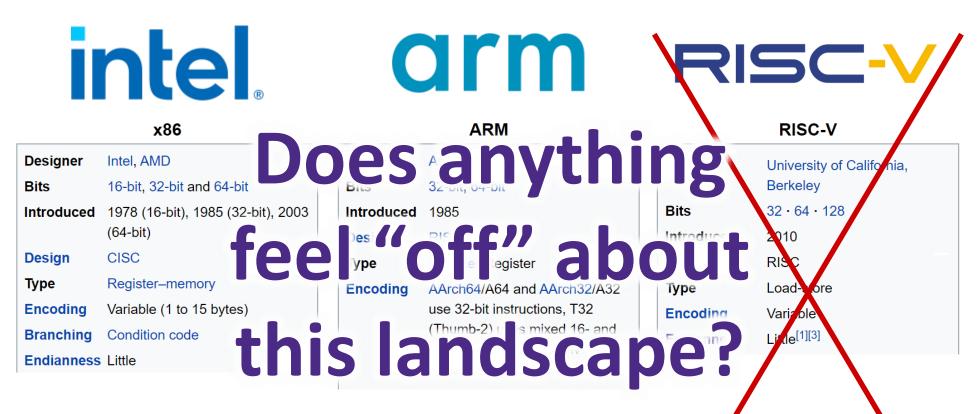
```
A. cmpq %rsi, %rdi x-y jle .L4
B. cmpq %rsi, %rdi x-y jg .L4
C. textq %rsi, %rdi xky jle .L4
D. textq %rsi, %rdi xky ig L4
```

```
long absdiff(long x, long y) {
  long result;
  if (x > y)
    result = x-y;
  else
    result = y-x;
  return result;
}
```

```
absdiff:
                          \# x > y:
            %rdi, %rax
   movq
   subq
            %rsi, %rax
   ret
.L4:
                         \# x <= y:
            %rsi, %rax
   movq
            %rdi, %rax
   subq
   ret
                      less than or equal to
```

Lecture Outline (4/4)

- Control Flow
- Condition Codes
- Conditionals
- Instruction Set Philosophies, Revisited


Instruction Set Philosophies, Revisited

- Complex Instruction Set Computing (CISC):
 Add more and more elaborate and specialized instructions as needed
 - Design goals: complete tasks in as few instructions as possible; minimize memory accesses for instructions
- Reduced Instruction Set Computing (RISC):
 Keep instruction set small and regular
 - Design goals: build fast hardware; instructions should complete in few clock cycles (ideally 1); minimize complexity and maximize performance
- How different are these two philosophies, really?

Instruction Set Philosophies, Revisited

- Complex Instruction Set Computing (CISC):
 Add more and more elaborate and specialized instructions as needed
 - Design goals: complete tasks in as few instructions as possible; minimize memory accesses for instructions
- Reduced Instruction Set Computing (RISC):
 Keep instruction set small and regular
 - Design goals: build fast hardware; instructions should complete in few clock cycles (ideally 1); minimize complexity and maximize performance
- How different are these two philosophies, really?
 - Both pursue efficiency (minimalism is a means to an end)

Mainstream ISAs, Revisited

Windows desktop/laptops (Core i3, i5, i7, Ryzen) x86-64 Instruction Set

Smartphone-like devices
(iPhone, Android, Raspberry Pi)
Apple products (ca. 2020-)
(Macbook, Mac Mini)
ARM Instruction Set

Mostly research (some traction in embedded)

RISC-V Instruction Set

Tech Monopolization (Oligopolization)

- How many "dominant" ISAs are there?
 - 2: x86, ARM
- How many "dominant" phone brands are there?
 - 3: Samsung, Apple, Xiaomi
- How many "dominant" operating systems are there?
 - 3-ish: Windows, iOS/macOS, Android/Linux
- How many "dominant" chip manufacturers are there?
 - 3: TSMC, Samsung, Intel
- It wasn't always this way!
 - Combination of antitrust policies and (lack of) enforcement

Discussion Questions

- Discuss the following question(s) in groups of 3-4 students
 - I will call on a few groups afterwards so please be prepared to share out
 - Be respectful of others' opinions and experiences
- How do you feel about tech oligopolization?
 - What are the benefits and disadvantages of this landscape for (1) the dominant companies and (2) the consumers?
 - These big tech companies are now worth billions of dollars. What might we try if we wanted to break up the oligopolization?

Summary (1/2)

- Control flow in x86 determined by Condition Codes
 - Showed Carry, Zero, Sign, and Overflow, though others exist
 - Set flags with arithmetic & logical instructions (implicit) or Compare/Test (explicit)
 - Set instructions (set*) read out flag values (0/1)
 - Jump instructions (j*) use flag values to determine next instruction to execute
 - Result of 1st instruction gets compared against 0 in a way determined by 2nd instruction:

			(op) s, d	cmp a, b	test a, b
je	sete	"Equal"	d (op) s == 0	b-a == 0	b&a == 0
jne	setne	"Not equal"	d (op) s != 0	b-a != 0	b&a != 0
js	sets	"Signed" (negative)	d (op) s < 0	b-a < 0	b&a < 0
jns	setns	"Not signed" (nonnegative)	d (op) s >= 0	b-a >= 0	b&a >= 0
jg	setg	"Greater"	d (op) s > 0	b-a > 0	b&a > 0
jge	setge	"Greater or equal"	d (op) s >= 0	b-a >= 0	b&a >= 0
jl	setl	"Less"	d (op) s < 0	b-a < 0	b&a < 0
jle	setle	"Less or equal"	d (op) s <= 0	b-a < 0	b&a <= 0
ja	seta	"Above" (unsigned >)	d (op) s > 0U	b > _U a	b&a > 0U
jb	setb	"Below" (unsigned <)	d (op) s < 0U	b < _U a	b&a < 0U

Summary (2/2)

♣ Labels (e.g., main, .L0) refer to an instruction address and used as jump targets in assembly

Bonus: Compound Conditional Example

```
if (x < 3 && x == y) {
   return 1;
} else {
   return 2;
}</pre>
```

```
cmpq $2, %rdi
  setle %dl
  cmpq %rsi, %rdi
  sete %al
  testb %al, %dl
  je T2
T1: \# x \le 2 \&\& x == y:
 movl $1, %eax
 ret
T2: # else
 movl $2, %eax
  ret
```

Variable	Register
Х	%rdi
У	%rsi
return value	%rax

		cmp a, b	test a, b
je	"Equal"	b-a == 0	b&a == 0
jne	"Not equal"	b-a != 0	b&a != 0
js	"Signed" (negative)	b-a < 0	b&a < 0
jns	"Not signed" (nonnegative)	b-a >= 0	b&a >= 0
jg	"Greater"	b-a > 0	b&a > 0
jge	"Greater or equal"	b-a >= 0	b&a >= 0
jl	"Less"	b-a < 0	b&a < 0
jle	"Less or equal"	b-a < 0	b&a <= 0
ja	"Above" (unsigned >)	b > _u a	b&a > 0U
jb	"Below" (unsigned <)	b < _u a	b&a < 0U