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Relevant Course Information

❖ Lab submissions that fail the autograder get a ZERO

▪ No excuses – make full use of tools & Gradescope’s interface

▪ Leeway on Lab 1a won’t be given moving forward

❖ Lab 2 (x86-64) released Wednesday

▪ Learn to trace x86-64 assembly and use GDB

❖ Midterm is in two weeks (10/27, 5:30pm, location dependent on section)

▪ No lecture that day

▪ You will be provided a fresh midterm reference sheet
• Study and use this NOW so you are comfortable with it when the exam comes around

▪ Form study groups and look at past exams!
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https://courses.cs.washington.edu/courses/cse351/25au/exams/ref-mt.pdf
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Lab Extra Credit

❖ Lab 2 and several other labs have “extra credit”

▪ These are meant to be fun extensions to the labs – you are not expected to 
attempt these extra components

❖ Extra credit points don't affect your lab grades

▪ From the course policies: “These will be accumulated over the course and may be 
used to bump up borderline grades at the end of the quarter at the discretion of 
the instructor(s).”

▪ Make sure you finish the rest of the lab before attempting any extra credit
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Lecture Outline (1/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited
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Control Flow (1/2)
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long max(long x, long y) {
  long max;
  if (x > y) {
    max = x;
  } else {
    max = y;
  }
  return max;
}

max:
  ???
  movq   %rdi, %rax
  ??? 
  ???
  movq   %rsi, %rax
  ???
  ret

Variable Register

x %rdi

y %rsi

return value %rax
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Control Flow (2/2)
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long max(long x, long y) {
  long max;
  if (x > y) {
    max = x;
  } else {
    max = y;
  }
  return max;
}

max:
  if x <= y then jump to else
  movq   %rdi, %rax
  jump to done
else:
  movq   %rsi, %rax
done:
  ret

Conditional jump

Unconditional jump

Variable Register

x %rdi

y %rsi

return value %rax



CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Conditionals and Control Flow

❖ Conditional jump: Jump to somewhere else if some condition 
is true, otherwise execute next instruction

❖ Unconditional jump: Always jump when you get to this instruction

❖ With just these two types of jumps, we can implement most control flow 
constructs in higher-level languages:

▪ if (condition) then {…} else {…}

▪ while (condition) {…}

▪ do {…} while (condition)

▪ for (initialization; condition; iterative) {…}

▪ switch {…}

7
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Lecture Outline (2/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited
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Processor State (x86-64, partial)

❖ Information about currently 
executing program

▪ Temporary data
( %rax, … )

▪ Location of runtime stack ( %rsp )

▪ Location of current code control 
point
( %rip, … )

▪ Status of recent tests
( CF, ZF, SF, OF )
• Single bit registers:
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%rip Program Counter
(instruction pointer)

CF ZF SF OF Condition Codes

Registers

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp
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Condition Codes (Review)

❖ Condition codes are set based on the result of the previous 
instruction(s)

▪ These are automatically updated by your CPU as instructions are executed

▪ Some instructions don’t affect the condition codes (e.g., mov, ret, lea)

❖ Carry: CF=1 if result had unsigned overflow

❖ Zero: ZF=1 if result was 0

❖ Sign: SF=1 if result was negative (i.e., same as sign bit)

❖ Overflow: OF=1 if result had signed overflow

10
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Implicit Setting (Review)

❖ Implicitly set by arithmetic and logical operations as side effect

▪ Notable exception: lea (beware! )

❖ Example:  %al=0x80, execute addb %al, %al
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CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag
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Explicit Setting (Review)

❖ Explicitly set by cmp and test, whose purposes are to change 
the condition codes without storing their results

▪ cmp is equivalent result to sub (-); test is equivalent result to and (&)

❖ Example:   %al=0x83 and %bl=0x8C, execute testb %al, %bl
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CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag
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Lecture Outline (3/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited
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Jump and Set Families (Review)

❖ j* target

▪ Jumps to target (an address) based on condition codes

❖ set* dst

▪ Set low-order byte of dst to 0x00 or 0x01 based on condition codes and does not 
alter remaining 7 bytes

❖ Typically come as the second in a pair of instructions:

1) Set the condition codes

2) Uses the condition codes to do something

14
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Instruction Condition Table (Review)

❖ j*/set* Instructions – focus on description, not formula

15

Jump Instr Set Instr Condition Description

jmp target n/a 1 Unconditional

je  target sete  dst ZF Equal to 0

jne target setne dst ~ZF Not Equal to 0

js  target sets  dst SF Signed/Negative

jns target setns dst ~SF Not Signed/Nonnegative

jg  target setg  dst ~(SF^OF)&~ZF Greater Than 0 (Signed)

jge target setge dst ~(SF^OF) Greater Than or Equal to 0 (Signed)

jl  target setl  dst (SF^OF) Less Than 0 (Signed)

jle target setle dst (SF^OF)|ZF Less Than or Equal to 0 (Signed)

ja  target seta  dst ~CF&~ZF Above 0 (unsigned “>”)

jb  target setb  dst CF Below 0 (unsigned “<“)



CSE351IntroductionL09: x86-64 Programming III CSE351, Autumn 2025

Choosing Instruction Pairs

❖ Find correct form of condition in table, use corresponding instrs

▪ Instruction #1 = chosen operation, Instruction #2 = row heading

▪ Recall: cmp performs sub
            test performs and

❖ Examples:
▪ x >= y → x – y >= 0 
       → cmp y, x
 jge target

▪ x == 3 → x – 3 == 0
 cmp 3, x
 je target

▪    x   → x & x != 0
 test x, x
 jne target
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(op) s, d

je /sete “Equal” d (op) s == 0

jne/setne “Not equal” d (op) s != 0

js /sets “Signed” (negative) d (op) s <  0

jns/setns “Not signed” (nonnegative) d (op) s >= 0

jg /setg “Greater” d (op) s >  0

jge/setge “Greater or equal” d (op) s >= 0

jl /setl “Less” d (op) s <  0

jle/setle ”Less or equal” d (op) s <= 0

ja /seta “Above” (unsigned >) d (op) s > 0U

jb /setb “Below” (unsigned <) d (op) s < 0U
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Set Example

▪ %al is lowest byte of %rax

▪ Uses movz to finish job, since set* only changes lowest byte of register
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int gt(long x, long y) {
  return x > y;
}

cmpq   %rsi, %rdi  # set flags on x - y
setg   %al         # %al = (x-y>0)
movzbl %al, %eax   # %rax = (x>y)
ret 

Variable Register

x %rdi

y %rsi

return value %rax
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Labels (Review)

❖ A jump changes the program counter (%rip)

▪ %rip tells the CPU the address of the next instruction to execute

❖ Labels give us a way to refer to a specific instruction in our assembly/machine 
code

▪ Associated with the next instruction found in the assembly code (ignores whitespace)

▪ Each use of the label will eventually be replaced with something that indicates the final 
address of the instruction that it is associated with
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swap:
  movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

max:
   movq %rdi, %rax
   cmpq %rsi, %rdi
   jg   done
   movq %rsi, %rax
done:
   ret
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Jump Example (Writing)

19

if (x < 3) {
  return 1;
}
return 2;

T1:
  movq $1, %rax
  ret
T2:
  movq $2, %rax
  ret

cmpq $3, %rdi
  jge T2

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0

jne “Not equal” b-a != 0 b&a != 0

js “Signed” (negative) b-a <  0 b&a <  0

jns “Not signed” (nonnegative) b-a >= 0 b&a >= 0

jg “Greater” b-a >  0 b&a >  0

jge “Greater or equal” b-a >= 0 b&a >= 0

jl “Less” b-a <  0 b&a <  0

jle ”Less or equal” b-a <  0 b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

Variable Register

x %rdi

return value %rax
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Jump Example (Reading)
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int mystery(int x) {
  if (        ) {

  } else {

  }
}

mystery: 
     movl    %edi, %eax
     testl   %edi, %edi
     js      .L3
.L2: ret
.L3: negl    %eax
     jmp     .L2

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0

jne “Not equal” b-a != 0 b&a != 0

js “Signed” (negative) b-a <  0 b&a <  0

jns “Not signed” (nonnegative) b-a >= 0 b&a >= 0

jg “Greater” b-a >  0 b&a >  0

jge “Greater or equal” b-a >= 0 b&a >= 0

jl “Less” b-a <  0 b&a <  0

jle ”Less or equal” b-a <  0 b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

Variable Register

x %edi

return value %eax
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Polling Question

A.  cmpq  %rsi, %rdi
 jle   .L4

B.  cmpq  %rsi, %rdi
 jg    .L4

C.  testq %rsi, %rdi
 jle   .L4

D.  testq %rsi, %rdi
 jg    .L4
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long absdiff(long x, long y) {
  long result;
  if (x > y)
    result = x-y;
  else
    result = y-x;
  return result;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

absdiff:

   __________________

   __________________

                     # x > y:
   movq    %rdi, %rax
   subq    %rsi, %rax
   ret
.L4:                   # x <= y:
   movq    %rsi, %rax
   subq    %rdi, %rax
   ret
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Lecture Outline (4/4)

❖ Control Flow

❖ Condition Codes

❖ Conditionals

❖ Instruction Set Philosophies, Revisited
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Instruction Set Philosophies, Revisited

❖ Complex Instruction Set Computing (CISC):  
Add more and more elaborate and specialized instructions as needed 

▪ Design goals: complete tasks in as few instructions as possible; minimize memory 
accesses for instructions

❖ Reduced Instruction Set Computing (RISC):  
Keep instruction set small and regular

▪ Design goals: build fast hardware; instructions should complete in few clock cycles 
(ideally 1); minimize complexity and maximize performance

❖ How different are these two philosophies, really?

23
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Instruction Set Philosophies, Revisited

❖ Complex Instruction Set Computing (CISC):  
Add more and more elaborate and specialized instructions as needed 

▪ Design goals: complete tasks in as few instructions as possible; minimize memory 
accesses for instructions

❖ Reduced Instruction Set Computing (RISC):  
Keep instruction set small and regular

▪ Design goals: build fast hardware; instructions should complete in few clock cycles 
(ideally 1); minimize complexity and maximize performance

❖ How different are these two philosophies, really?

▪ Both pursue efficiency (minimalism is a means to an end)
24
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Exceedingly Dominant ISAsMainstream ISAs, Revisited

25

Windows desktop/laptops
(Core i3, i5, i7, Ryzen)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, Android, Raspberry Pi)
Apple products (ca. 2020-)
(Macbook, Mac Mini)
ARM Instruction Set

Mostly research 
(some traction in embedded)
RISC-V Instruction Set

Does anything 
feel “off” about 
this landscape?

http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
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Tech Monopolization (Oligopolization)

❖ How many “dominant” ISAs are there?

▪ 2: x86, ARM

❖ How many “dominant” phone brands are there?

▪ 3: Samsung, Apple, Xiaomi

❖ How many “dominant” operating systems are there?

▪ 3-ish: Windows, iOS/macOS, Android/Linux

❖ How many “dominant” chip manufacturers are there?

▪ 3: TSMC, Samsung, Intel

❖ It wasn’t always this way!

▪ Combination of antitrust policies and (lack of) enforcement
26
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Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ How do you feel about tech oligopolization?

▪ What are the benefits and disadvantages of this landscape for 
(1) the dominant companies and (2) the consumers?

▪ These big tech companies are now worth billions of dollars. What might we try if 
we wanted to break up the oligopolization?

27
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Summary (1/2)

❖ Control flow in x86 determined by Condition Codes

▪ Showed Carry, Zero, Sign, and Overflow, though others exist 

▪ Set flags with arithmetic & logical instructions (implicit) or Compare/Test (explicit)

▪ Set instructions (set*) 
read out flag values (0/1)

▪ Jump instructions (j*) 
use flag values to determine 
next instruction to execute

▪ Result of 1st instruction
gets compared against 0 
in a way determined 
by 2nd instruction:

(op) s, d cmp a, b test a, b

je sete “Equal” d (op) s == 0 b-a == 0 b&a == 0

jne setne “Not equal” d (op) s != 0 b-a != 0 b&a != 0

js sets “Signed” (negative) d (op) s <  0 b-a <  0 b&a <  0

jns setns “Not signed” (nonnegative) d (op) s >= 0 b-a >= 0 b&a >= 0

jg setg “Greater” d (op) s >  0 b-a >  0 b&a >  0

jge setge “Greater or equal” d (op) s >= 0 b-a >= 0 b&a >= 0

jl setl “Less” d (op) s <  0 b-a <  0 b&a <  0

jle setle ”Less or equal” d (op) s <= 0 b-a <  0 b&a <= 0

ja seta “Above” (unsigned >) d (op) s > 0U b >U a b&a > 0U

jb setb “Below” (unsigned <) d (op) s < 0U b <U a b&a < 0U

https://en.wikipedia.org/wiki/Status_register#Common_flags
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Summary (2/2)

❖ Labels (e.g., main, .L0) refer to an instruction address and used as 
jump targets in assembly
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Bonus: Compound Conditional Example

30

cmpq  $2, %rdi

  setle %dl

  cmpq  %rsi, %rdi

  sete  %al

  testb %al, %dl

  je    T2

T1: # x <= 2 && x == y:

  movl  $1, %eax

  ret

T2: # else

  movl  $2, %eax

  ret

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0

jne “Not equal” b-a != 0 b&a != 0

js “Signed” (negative) b-a <  0 b&a <  0

jns “Not signed” (nonnegative) b-a >= 0 b&a >= 0

jg “Greater” b-a >  0 b&a >  0

jge “Greater or equal” b-a >= 0 b&a >= 0

jl “Less” b-a <  0 b&a <  0

jle ”Less or equal” b-a <  0 b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

if (x < 3 && x == y) {
  return 1;
} else {
  return 2;
}

Variable Register

x %rdi

y %rsi

return value %rax
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