YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Il

CSE351, Autumn 2025

The Hardware/Software Interface
Xx86-64 Programming Il

Instructors:

Amber Hu, Justin Hsia

Teaching Assistants: \M e waitd 24
Anthony Mangus Divya Ramu Lo s !
Grace Zhou Jessie Sun

Jiuyang Lyu Kanishka Singh

Kurt Gu Liander Rainbolt

Mendel Carroll
Naama Amiel
Rose Maresh

Violet Monserate

Ming Yan
Pollux Chen
Soham Bhosale

TLL BE IN YOUR CITY TOMORROW
IF YOU LIANT TO HANG OUT.

BUT LHERE WILL YOV BE IF
I L2ONT JANT TO HANG oUT?!

YOU KNOW, T JUsT
REMEMBERED I BUsY.

WHY TRy NoT 10 BE
PEDANTIC ABOUT CONDITIONALS.

http://xkcd.com/1652/

http://xkcd.com/1652/

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Relevant Course Information

+ Lab submissions that fail the autograder get a ZERO
" No excuses — make full use of tools & Gradescope’s interface
" |eeway on Lab 1a won’t be given moving forward

+ Lab 2 (x86-64) released Wednesday

" |earn to trace x86-64 assembly and use GDB

% Midterm is in two weeks (10/27, 5:30pm, location dependent on section)
" No lecture that day

" You will be provided a fresh midterm reference sheet

- Study and use this NOW so you are comfortable with it when the exam comes around

" Form study groups and look at past exams!

https://courses.cs.washington.edu/courses/cse351/25au/exams/ref-mt.pdf

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Lab Extra Credit

« Lab 2 and several other labs have “extra credit”

" These are meant to be fun extensions to the labs — you are not expected to
attempt these extra components

+ Extra credit points don't affect your lab grades

" From the course policies: “These will be accumulated over the course and may be
used to bump up borderline grades at the end of the quarter at the discretion of
the instructor(s).”

= Make sure you finish the rest of the lab before attempting any extra credit

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill

Lecture Outline (1/4)

+» Control Flow

+ Condition Codes

+» Conditionals

+ Instruction Set Philosophies, Revisited

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Control Flow (1/2)

L09: x86-64 Programming Il

long max(long x, long y) {
long max;

max:.

if (x > y) {
max = Xj;—— > mov(q %rdi, %rax & F g
} else {
max = y;
_—__-__'_—-—_— .
1 ® movq %rsi, %raxielx (e
return max;
} ret
Variable Register
X %rdi
y %rs

return value %rax

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Control Flow (2/2)

L09: x86-64 Programming Il

long max;

if (x > y) {
max = X;

} else {
max = y;

}

return max;

}

long max(long x, long y) {

Conditional jump

Unconditional jump _
else:

MaX: fTRE
/

C;ﬁovq %rdi, %rax

jump to done

mov(q %rsi, %rax
N

ff‘ﬁ:ﬂ;?e” jump to els

<

>

J

done:
Cﬁ ret
X %rdi
y %rsi

return value %rax

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Autumn 2025

Conditionals and Control Flow

+» Conditional jump: Jump to somewhere else if some condition
is true, otherwise execute next instruction

+» Unconditional jump: Always jump when you get to this instruction

+» With just these two types of jumps, we can implement most control flow
constructs in higher-level languages:
= if (condition) then {..} else {..}
= while (condition) {..}
= do {..} while (condition)
= for (initialization; condition; iterative) {..}
= switch {..}

YA/ UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Lecture Outline (2/4)

% Control Flow

+ Condition Codes

+» Conditionals

+ Instruction Set Philosophies, Revisited

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Processor State (x86-64, partial)

+» Information about currently Registers
executing program frax frs
%rbx %r9
" Temporary data o %r 10
%Brax, ..) %rdx %r1l
= Location of runtime stack (%rsp) %rsi %r12
= Location of current code control %rdi %rl3
point %rsp %r14
96r._i p’ .) /ol"bp /ol"l5
= Status of recent tests v Program Counter
(CF, ZF, SF, OF) or'P (instruction pointer)

Cawry Zevo STQY\ Overflow
CF||ZF || SF OF7ConditionCodes

- Single bit registers: “Qags”

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Condition Codes (Review)

+» Condition codes are set based on the result of the previous
instruction(s)
" These are automatically updated by your CPU as instructions are executed
= Some instructions don’t affect the condition codes (e.g., mov, ret, lea)

+ Carry: -=1 if result had unsigned overflow

« Zero: -=1 if result was 0

C
Z

+ Sign: SF=1 if result was negative (i.e., same as sign bit)
o)

+» Overflow: OF=1 if result had signed overflow

10

L09: x86-64 Programming llI CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Implicit Setting (Review)

+ Implicitly set by arithmetic and logical operations as side effect

= Notable exception: lea (beware! @)

+» Example: %al= 0x80, execute addb %al, %al
Ok, (020 OO
+ 0L | ovd OOOV

“r/oooo 0DbH6

aympw‘l‘d .

1_ (CCM Y o\&f ’(vav'\ MSB)
(==0)

stores /—(5;00 M A af/ p— g

[CF| carry Flag |ZF| zero Flag |SF| Sign Flag |OF| overflow Flag]
11

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Explicit Setting (Review)

« Explicitly set by cmp and test, whose purposes are to change
the condition codes without storing their results

= cmp is equivalent result to sub (-); test is equivalent result to and (&)

+» Example: %al=0x83 and %b1=0x8C, execute testb %al, %bl

compter O 1LVO OOV
% ob LoDV 11OO

CF=0 (no w@rryodt)

1000 OOL Z2e-0 (l=o)
result is O%goj p—) SFE = l (MSB (s 1)
but %5 bL s Umd/langec\!, O‘F - O (VLD ow.ﬂb\o)

[CF| carry Flag |ZF| zero Flag |SF| Sign Flag |OF| overflow Flag]

12

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill

Lecture Outline (3/4)

% Control Flow

% Condition Codes

+» Conditionals

+ Instruction Set Philosophies, Revisited

13

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Autumn 2025

Jump and Set Families (Review)

+ J* target

= Jumps to target (an address) based on condition codes

» setx dst

= Set low-order byte of dst to 0x00 or 0x01 based on condition codes and does not
alter remaining 7 bytes

+» Typically come as the second in a pair of instructions:
1) Set the condition codes
2) Uses the condition codes to do something

14

YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Il

Instruction Condition Table (Review)

» J¥/set* Instructions — focus on description, not formula
/don‘+ Worry abod the ddbfl')

Jump Instr Set Instr (Condition Description

X jmp target n/a \3/ \ Unconditional

?g target | sete dst / ZF \ Equal to O
jne target | setne dst / ~ZF \ Not Equal to 0
js target | sets dst / SF \ Signed/Negative
jns target | setns dst ~SF Not Signed/Nonnegative
jg target | setg dst ||[~(SFAOF)&~ZF Greater Than 0 (Signed)
jge target | setge dst ~(SFAOF) Greater Than or Equal to 0 (Signed)
jl target | setl dst " (SFAOF) Less Than O (Signed)
jle target | setle dst \ (SFAOF) | ZF Less Than or Equal to O (Signed)
ja target | seta dst \ ~CF&~Z F/ Above O (unsigned “>”
jb target | setb dst \ /Cl/ Below O (unsigned “<“

CSE351, Autumn 2025

15

YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Il

Choosing Instruction Pairs

+ Find correct form of condition in table, use corresponding instrs
" |nstruction #1 = chosen operation, Instruction #2 = row heading

= Recall: cmp performs sub
test performs and

+» Examples:

lx>

y

-

-

o —

X -y >=0
cmp ¥, ¥
jge target
X — 3 ==
cmp 3, X
je target
x & x =0
test x, Xx
jne target

CSE351, Autumn 2025

(op) s, d
je /sete “Equal”’ d (op) s == 0
jne/setne “Notequal”’ d (op) s I=0
js /sets “Signed” (negative) d (op) s < 0
jns/setns “Notsigned” (nonnegative) | d (op) s >= 0
jg /setg “Greater” d (op) s > 0
jge/setge “Greater or equal” d (op) s >= 0
jl /setl “Less” d (op) s < 0
jle/setle ’Lessorequal” d (op) s <=0
ja /seta “Above” (unsigned >) d (op) s > oU
jb /setb “Below” (unsigned <) d (op) s < oU

16

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Autumn 2025

Set Example

int gt(long x, long) |

return x > y; X %rd-
I X -~ 70

y %rsi

return value %rax

Y, K T omp hrs 2 ed
56['_(9 . Sd'g 06\2

cmpq %rsi, %rdi # set flags on x — y
setg %al # %al = (x-y>0)
movzbl %al, %eax # %rax = (x>y)

ret

= %al is lowest byte of %rax
= Uses movz to finish job, since set*x only changes lowest byte of register

17

YA UNIVERSITY of WASHINGTON

Labels (Review)

L09: x86-64 Programming Il

swap:
movq
movq
movq
movq
ret

(%rdi), %rax
(%rsi), %rdx

%rdx,
%rax,

(%rdi)
%rsi)

+ A jump changes the program counter

max:
movq %rdi,
cmpq %rsi,
jg (doney
movq %rsi,
done:

%rax
%rdi

%rax

ret
%rip(

= %rip tells the CPU the address of the next instruction to execute

CSE351, Autumn 2025

+» Labels give us a way to refer to a specific instruction in our assembly/machine

code

= Associated with the next instruction found in the assembly code (ignores whitespace)

= Each use of the label will eventually be replaced with something that indicates the final
address of the instruction that it is associated with

18

YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Il

Jump Example (Writing)

GH)

(e\ sc)

if (x < 3) {

return

}

return 2;

135
&

&0 ;H;_:li i

cmpg $3, %rdi

jge T2

Tl: £ x<x &3

movq $1, %rax

ret

T2: # ! (<«3)
movq $2, %rax

ret

X %rdi

return value %rax

CSE351, Autumn 2025

5 X
pcmp a, b | test a, b
je “Equal’ " b-a == 0 | b&a == 0
jne “Notequal” b-a != 0 b&a != 0
js “Signed” (negative) b-a < 0 b&a < 0
jns “Notsigned” (nonnegative) b-a >= 0 / b&a >= 0
jg “Greater” b-a > 0 / b&a > 0
@ jge Greater or equal” *@—%ﬂ ;:::__@ b&a >= 0
jl “Less” b-a < 0 b&a < 0
jle “Lessorequal” b-a < 0 b&a <= 0
ja “Above” (unsigned >) b >, a b&a > 0OU
jb “Below” (unsigned <) b <, a b&a < 0OU

c

19

YA UNIVERSITY of WASHINGTON

Jump Example (Reading)

mystery:
mov'l %ed ,
testl %ed ,
js Flie (L3 True #9u
.Lz:qret Q

%eax 4t = X
%edi 4 xox

L09: x86-64 Programming Il

%ed1

A& w < Oreturn value

%beax

.L3 ({l?egl %eax £ negde X cmp a, b test a,
Ul L2 © je “Equal’ b-a == 0
g \ jne “Notequal” b-a 0] !
int mystery(int x) { js__ “Signed” (negative) b-a < 0 [(b&a < 0
'i f (=, < O) { jns “Notsigned” (nonnegative) b-a 0] o
re,‘f'urn —x° jg “Greater” b-a 0
} else { / jge “Greater or equal” b-a 0]
jl “Less” b-a 0]
V’C,’l'wn 7() jle “Lessorequal”’ b-a 0]
} ja “Above” (unsigned >) b > > 0U
| }) jb “Below” (unsigned <) b <,

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Polling Question

Cnegiter | Usels)

%rdi 15t argument (X)
%rs 2" argument (y)
%rax return value
ol
B. cmpg %rsi, %rdi
Jjg . L4
c. tdtq %rsi, %rd
jle . L4
D. toktq %rsi, %rdi
Jg .L4

L09: x86-64 Programming Il

x&y'

long absdiff(long x, long y) {

long result;

if (x > vy)
result = x-y;
else
result = y-x;
return result;
}
absdiff:
X > y:
movq %rdi, %rax
subq %rsi, %rax
ret
.L4: # x <= y:
mov(q %rsi, %rax Xy <= O
subq %rdi, %rax
ret

|cnjﬁW1orede+o

CTe)

CSE351, Autumn 2025

21

YA/ UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Autumn 2025

Lecture Outline (4/4)

% Control Flow

% Condition Codes

% Conditionals

+ Instruction Set Philosophies, Revisited

22

YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Il

CSE351, Autumn 2025

Instruction Set Philosophies, Revisited

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

= Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

23

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill

CSE351, Autumn 2025

Instruction Set Philosophies, Revisited

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

" Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

= Both pursue efficiency (minimalism is a means to an end)

24

YA/ UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill

Mainstream ISAs, Revisited

inteL arm Risc

ARM ® RISC-V

- o DO@S AN t hing\ .-
Bits 16-bit, 32-bit and 64-bit Berkeley
Introduced 1978 (16-bit), 1985 (32-hit), 2003 Introduced 1985 Bits

(64-bit) < dd -.,h_,.._
- = foeal."off" a
Type Register-memory tncodlng AArch64/A64 and AArch32/A32 I‘ype
Encoding Variable (1 to 15 bytes) use 32-bit instructions, T32 Encod,nﬂ
Branching Condition code (Th' mb-2) s mixed 16- and
znz this landscape?
Windows desktop/laptops Smartphone-like devices
(Core i3, i5, i7, Ryzen) (iPhone, Android, Raspberry Pi)
x86-64 Instruction Set Apple products (ca. 2020-)

(Macbook, Mac Mini)
ARM Instruction Set

CSE351, Autumn 2025

25

http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill

Tech Monopolization (Oligopolization)

+» How many “dominant” ISAs are there?
= 2:x86, ARM

+» How many “dominant” phone brands are there?
= 3:Samsung, Apple, Xiaomi

+» How many “dominant” operating systems are there?
= 3-jsh: Windows, i0OS/macOS, Android/Linux

+» How many “dominant” chip manufacturers are there?
= 3: TSMC, Samsung, Intel

+ It wasn’t always this way!

= Combination of antitrust policies and (lack of) enforcement

CSE351, Autumn 2025

26

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+ How do you feel about tech oligopolization?

" What are the benefits and disadvantages of this landscape for
(1) the dominant companies and (2) the consumers?

" These big tech companies are now worth billions of dollars. What might we try if
we wanted to break up the oligopolization?

27

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Il CSE351, Autumn 2025

Summary (1/2)

+ Control flow in x86 determined by Condition Codes

= Showed Carry, Zero, Sign, and Overflow, though others exist

= Set flags with arithmetic & logical instructions (implicit) or Compare/Test (explicit)
= Set instructions (setx)

read out flag values (0/1) (op) s, d | cmp a, b |test a, b
- Jump instructions (J*) je sete “Equal” d (op) s == 0 | b-a == 0| b& == 0
. jne setne “Notequal” d (op) s !=0 | b-a !=0]b&a !=0
use flag values to determine - _ .
. . js sets “Signed” (negative) d (op) s < 0| b-a< 0] b& < 0
next instruction to execute jns setns “Notsigned” (nonnegative) d (op) s >= 0| b-a >= 0 | b& >= 0
® Result of 15t instruction jg setg ‘“Greater d (op) s> O0|b-a> 0]b& > 0
getS Compared aga|n5t 0 jge setge “Greaterorequal” d (op) s >= 0 | b-a >= 0 | b& >= 0
. . jl setl “Less” d (op) s < O] b-a< 0]b& < 0
in a way determined :
d . . jle setle “Lessorequal”’ d (op) s <=0 | b-a< 0] b&a <=0
by 2" Instruction: ja seta “Above” (unsigned >) d (op) s > oU b >, a b&a > 0OU
jb setb “Below” (unsigned <) d (op) s < oU b <, a b&a < OU

https://en.wikipedia.org/wiki/Status_register#Common_flags

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Autumn 2025

Summary (2/2)

+ Labels (e.g., main, . LO) refer to an instruction address and used as
jump targets in assembly

YA UNIVERSITY of WASHINGTON

Bonus: Compound Conditional Example

if (x < 3 && x == y) {
return 1;

} else {
return 2;

)

cmpg $2, %rdi
setle 3dl
cmpqg $rsi, srdil
sete 3al
testb %al, %dl
je T2

Tl: # x <= 2 && x == y:
movl S$S1, %eax
ret

T2: # else
movl S2, $%$eax
ret

L09: x86-64 Programming Il

CSE351, Autumn 2025

X %rdi

y %rsi
return value %rax

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0
jne “Notequal” b-a I= 0 b&a != 0
js “Signed” (negative) b-a < 0 b&a < 0
jns “Notsigned” (nonnegative) b-a >= 0 b&a >= 0
jg “Greater” b-a > 0 b&a > 0
jge “Greater or equal” b-a >= 0 b&a >= 0
jl “Less” b-a < 0 b&a < 0
jle “Lessorequal” b-a < 0 b&a <= 0
ja “Above” (unsigned >) b >, b&a > 0U
jb “Below” (unsigned <) b <, b&a < 0OU

30

	Slide 1: The Hardware/Software Interface x86-64 Programming III
	Slide 2: Relevant Course Information
	Slide 3: Lab Extra Credit
	Slide 4: Lecture Outline (1/4)
	Slide 5: Control Flow (1/2)
	Slide 6: Control Flow (2/2)
	Slide 7: Conditionals and Control Flow
	Slide 8: Lecture Outline (2/4)
	Slide 9: Processor State (x86-64, partial)
	Slide 10: Condition Codes (Review)
	Slide 11: Implicit Setting (Review)
	Slide 12: Explicit Setting (Review)
	Slide 13: Lecture Outline (3/4)
	Slide 14: Jump and Set Families (Review)
	Slide 15: Instruction Condition Table (Review)
	Slide 16: Choosing Instruction Pairs
	Slide 17: Set Example
	Slide 18: Labels (Review)
	Slide 19: Jump Example (Writing)
	Slide 20: Jump Example (Reading)
	Slide 21: Polling Question
	Slide 22: Lecture Outline (4/4)
	Slide 23: Instruction Set Philosophies, Revisited
	Slide 24: Instruction Set Philosophies, Revisited
	Slide 25: Mainstream ISAs, Revisited
	Slide 26: Tech Monopolization (Oligopolization)
	Slide 27: Discussion Questions
	Slide 28: Summary (1/2)
	Slide 29: Summary (2/2)
	Slide 30: Bonus: Compound Conditional Example

