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Relevant Course Information

+ Lab submissions that fail the autograder get a ZERO
" No excuses — make full use of tools & Gradescope’s interface
" |eeway on Lab 1a won’t be given moving forward

+ Lab 2 (x86-64) released Wednesday

" |earn to trace x86-64 assembly and use GDB

% Midterm is in two weeks (10/27, 5:30pm, location dependent on section)
" No lecture that day

" You will be provided a fresh midterm reference sheet

- Study and use this NOW so you are comfortable with it when the exam comes around

" Form study groups and look at past exams!



https://courses.cs.washington.edu/courses/cse351/25au/exams/ref-mt.pdf
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Lab Extra Credit

« Lab 2 and several other labs have “extra credit”

" These are meant to be fun extensions to the labs — you are not expected to
attempt these extra components

+ Extra credit points don't affect your lab grades

" From the course policies: “These will be accumulated over the course and may be
used to bump up borderline grades at the end of the quarter at the discretion of
the instructor(s).”

= Make sure you finish the rest of the lab before attempting any extra credit
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Lecture Outline (1/4)

+» Control Flow

+ Condition Codes

+» Conditionals

+ Instruction Set Philosophies, Revisited

CSE351, Autumn 2025
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Control Flow (1/2)
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long max(long x, long y) {
long max;

max:.

if (x > y) {
max = Xj;—— > mov(q %rdi, %rax & F g
} else {
max = y;
_—__-__'_—-—_— .
1 ®  movq  %rsi, %raxielx (e
return max;
} ret
Variable Register
X %rdi
y %rs

return value %rax

CSE351, Autumn 2025
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Control Flow (2/2)
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long max;

if (x > y) {
max = X;

} else {
max = y;

}

return max;

}

long max(long x, long y) {

Conditional jump

Unconditional jump _
else:

MaX:  fTRE
/

C;ﬁovq %rdi, %rax

jump to done

mov(q %rsi, %rax
N

ff‘ﬁ:ﬂ;?e” jump to els

<

>

J

done:
Cﬁ ret
X %rdi
y %rsi

return value %rax

CSE351, Autumn 2025
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Conditionals and Control Flow

+» Conditional jump: Jump to somewhere else if some condition
is true, otherwise execute next instruction

+» Unconditional jump: Always jump when you get to this instruction

+» With just these two types of jumps, we can implement most control flow
constructs in higher-level languages:
= if (condition) then {..} else {..}
= while (condition) {..}
= do {..} while (condition)
= for (initialization; condition; iterative) {..}
= switch {..}
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Lecture Outline (2/4)

% Control Flow

+ Condition Codes

+» Conditionals

+ Instruction Set Philosophies, Revisited
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Processor State (x86-64, partial)

+» Information about currently Registers
executing program frax frs
%rbx %r9
" Temporary data o %r 10
%Brax, ..) %rdx %r1l
= Location of runtime stack ( %rsp ) %rsi %r12
= Location of current code control %rdi %rl3
point %rsp %r14
96r._i p’ . ) /ol"bp /ol"l5
= Status of recent tests v Program Counter
( CF, ZF, SF, OF ) or'P (instruction pointer)

Cawry Zevo STQY\ Overflow
CF||ZF || SF OF7ConditionCodes

- Single bit registers: “Qags”
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Condition Codes (Review)

+» Condition codes are set based on the result of the previous
instruction(s)
" These are automatically updated by your CPU as instructions are executed
= Some instructions don’t affect the condition codes (e.g., mov, ret, lea)

+ Carry: -=1 if result had unsigned overflow

« Zero: -=1 if result was 0

C
Z

+ Sign: SF=1 if result was negative (i.e., same as sign bit)
o)

+» Overflow: OF=1 if result had signed overflow

10
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Implicit Setting (Review)

+ Implicitly set by arithmetic and logical operations as side effect

= Notable exception: lea (beware! @)

+» Example: %al= 0x80, execute addb %al, %al
Ok, (020 OO
+ 0L | ovd OOOV

“r/oooo 0DbH6

aympw‘l‘d .

1_ (CCM Y o\&f ’(vav'\ MSB)
(==0)

stores /—(5;00 M A af/ p— g

[ CF| carry Flag |ZF| zero Flag |SF| Sign Flag |OF| overflow Flag]
11
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Explicit Setting (Review)

« Explicitly set by cmp and test, whose purposes are to change
the condition codes without storing their results

= cmp is equivalent result to sub (-); test is equivalent result to and (&)

+» Example: %al=0x83 and %b1=0x8C, execute testb %al, %bl

compter O 1LVO OOV
% ob LoDV 11OO

CF=0 (no w@rryodt)

1000 OOL Z2e-0 (l=o)
result is O%goj p—) SFE = l (MSB (s 1)
but %5 bL s Umd/langec\!, O‘F - O (VLD ow.ﬂb\o)

[ CF| carry Flag |ZF| zero Flag |SF| Sign Flag |OF| overflow Flag]

12
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Lecture Outline (3/4)

% Control Flow

% Condition Codes

+» Conditionals

+ Instruction Set Philosophies, Revisited

13
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Jump and Set Families (Review)

+ J* target

= Jumps to target (an address) based on condition codes

» setx dst

= Set low-order byte of dst to 0x00 or 0x01 based on condition codes and does not
alter remaining 7 bytes

+» Typically come as the second in a pair of instructions:
1) Set the condition codes
2) Uses the condition codes to do something

14
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Instruction Condition Table (Review)

» J¥/set* Instructions — focus on description, not formula
/don‘+ Worry abod the ddbfl')

Jump Instr Set Instr ( Condition Description

X jmp target n/a \3/ \ Unconditional

?g target | sete dst / ZF \ Equal to O
jne target | setne dst / ~ZF \ Not Equal to 0
js target | sets dst / SF \ Signed/Negative
jns target | setns dst ~SF Not Signed/Nonnegative
jg target | setg dst ||[~(SFAOF)&~ZF Greater Than 0 (Signed)
jge target | setge dst ~(SFAOF) Greater Than or Equal to 0 (Signed)
jl target | setl dst " (SFAOF) Less Than O (Signed)
jle target | setle dst \ (SFAOF) | ZF Less Than or Equal to O (Signed)
ja target | seta dst \ ~CF&~Z F/ Above O (unsigned “>”
jb target | setb dst \ /Cl/ Below O (unsigned “<“

CSE351, Autumn 2025
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Choosing Instruction Pairs

+ Find correct form of condition in table, use corresponding instrs
" |nstruction #1 = chosen operation, Instruction #2 = row heading

= Recall: cmp performs sub
test performs and

+» Examples:

lx>

y

-

-

o —

X -y >=0
cmp ¥, ¥
jge target
X — 3 ==
cmp 3, X
je target
x & x =0
test x, Xx
jne target

CSE351, Autumn 2025

(op) s, d
je /sete  “Equal”’ d (op) s == 0
jne/setne “Notequal”’ d (op) s I=0
js /sets  “Signed” (negative) d (op) s < 0
jns/setns “Notsigned” (nonnegative) | d (op) s >= 0
jg /setg  “Greater” d (op) s > 0
jge/setge “Greater or equal” d (op) s >= 0
jl /setl  “Less” d (op) s < 0
jle/setle ’Lessorequal” d (op) s <=0
ja /seta  “Above” (unsigned >) d (op) s > oU
jb /setb  “Below” (unsigned <) d (op) s < oU

16
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Set Example

int gt(long x, long ) |

return x > y; X %rd-
I X -~ 70

y %rsi

return value %rax

Y, K T omp hrs 2 ed
56['_(9 . Sd'g 06\2

cmpq %rsi, %rdi # set flags on x — y
setg %al # %al = (x-y>0)
movzbl %al, %eax # %rax = (x>y)

ret

= %al is lowest byte of %rax
= Uses movz to finish job, since set*x only changes lowest byte of register

17
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Labels (Review)

L09: x86-64 Programming Il

swap:
movq
movq
movq
movq
ret

(%rdi), %rax
(%rsi), %rdx

%rdx,
%rax,

(%rdi)
%rsi)

+ A jump changes the program counter

max:
movq %rdi,
cmpq %rsi,
jg (doney
movq %rsi,
done:

%rax
%rdi

%rax

ret
%rip(

= %rip tells the CPU the address of the next instruction to execute

CSE351, Autumn 2025

+» Labels give us a way to refer to a specific instruction in our assembly/machine

code

= Associated with the next instruction found in the assembly code (ignores whitespace)

= Each use of the label will eventually be replaced with something that indicates the final
address of the instruction that it is associated with

18
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Jump Example (Writing)

GH)

(e\ sc)

if (x < 3) {

return

}

return 2;

135
&

&0 ;H;_:li i

cmpg $3, %rdi

jge T2

Tl: £ x<x &3

movq $1, %rax

ret

T2: # ! (<«3)
movq $2, %rax

ret

X %rdi

return value %rax

CSE351, Autumn 2025

5 X
pcmp a, b | test a, b
je  “Equal’ " b-a == 0 | b&a == 0
jne  “Notequal” b-a != 0 b&a != 0
js “Signed” (negative) b-a < 0 b&a < 0
jns  “Notsigned” (nonnegative) b-a >= 0 / b&a >= 0
jg “Greater” b-a > 0 / b&a > 0
@ jge Greater or equal” *@—%ﬂ ;:::__@ b&a >= 0
jl “Less” b-a < 0 b&a < 0
jle “Lessorequal” b-a < 0 b&a <= 0
ja “Above” (unsigned >) b >, a b&a > 0OU
jb “Below” (unsigned <) b <, a b&a < 0OU

c

19
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Jump Example (Reading)

mystery:
mov'l %ed ,
testl %ed ,
js Flie (L3 True  #9u
.Lz:qret Q

%eax 4t = X
%edi 4 xox

L09: x86-64 Programming Il

%ed1

A& w < Oreturn value

%beax

.L3 ({l?egl %eax £ negde X cmp a, b test a,
Ul L2 © je  “Equal’ b-a == 0
g \ jne “Notequal” b-a 0] !
int mystery(int x) { js__ “Signed” (negative) b-a < 0 [(b&a < 0
'i f ( =, < O ) { jns  “Notsigned” (nonnegative) b-a 0] o
re,‘f'urn —x° jg “Greater” b-a 0
} else { / jge  “Greater or equal” b-a 0]
jl “Less” b-a 0]
V’C,’l'wn 7() jle “Lessorequal”’ b-a 0]
} ja “Above” (unsigned >) b > > 0U
| } ) jb “Below” (unsigned <) b <,

CSE351, Autumn 2025
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Polling Question

Cnegiter | Usels)

%rdi 15t argument (X)
%rs 2" argument (y)
%rax return value
ol
B. cmpg %rsi, %rdi
Jjg . L4
c. tdtq %rsi, %rd
jle . L4
D. toktq %rsi, %rdi
Jg .L4

L09: x86-64 Programming Il

x&y'

long absdiff(long x, long y) {

long result;

if (x > vy)
result = x-y;
else
result = y-x;
return result;
}
absdiff:
# X > y:
movq %rdi, %rax
subq %rsi, %rax
ret
.L4: # x <= y:
mov(q %rsi, %rax Xy <= O
subq %rdi, %rax
ret

|cnjﬁW1orede+o

CTe)

CSE351, Autumn 2025
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Lecture Outline (4/4)

% Control Flow

% Condition Codes

% Conditionals

+ Instruction Set Philosophies, Revisited

22
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Instruction Set Philosophies, Revisited

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

= Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

23
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Instruction Set Philosophies, Revisited

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

" Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

= Both pursue efficiency (minimalism is a means to an end)

24
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Mainstream ISAs, Revisited

inteL arm Risc

ARM ® RISC-V

- o DO@S AN t hing\ .-
Bits 16-bit, 32-bit and 64-bit Berkeley
Introduced 1978 (16-bit), 1985 (32-hit), 2003 Introduced 1985 Bits

(64-bit) < dd -.,h_,.._
- = foeal."off" a
Type Register-memory tncodlng AArch64/A64 and AArch32/A32 I‘ype
Encoding Variable (1 to 15 bytes) use 32-bit instructions, T32 Encod,nﬂ
Branching Condition code (Th' mb-2) s mixed 16- and
znz this landscape?
Windows desktop/laptops Smartphone-like devices
(Core i3, i5, i7, Ryzen) (iPhone, Android, Raspberry Pi)
x86-64 Instruction Set Apple products (ca. 2020-)

(Macbook, Mac Mini)
ARM Instruction Set

CSE351, Autumn 2025
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http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
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Tech Monopolization (Oligopolization)

+» How many “dominant” ISAs are there?
= 2:x86, ARM

+» How many “dominant” phone brands are there?
= 3:Samsung, Apple, Xiaomi

+» How many “dominant” operating systems are there?
= 3-jsh: Windows, i0OS/macOS, Android/Linux

+» How many “dominant” chip manufacturers are there?
= 3: TSMC, Samsung, Intel

+ It wasn’t always this way!

= Combination of antitrust policies and (lack of) enforcement

CSE351, Autumn 2025

26
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Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+ How do you feel about tech oligopolization?

" What are the benefits and disadvantages of this landscape for
(1) the dominant companies and (2) the consumers?

" These big tech companies are now worth billions of dollars. What might we try if
we wanted to break up the oligopolization?

27
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Summary (1/2)

+ Control flow in x86 determined by Condition Codes

= Showed Carry, Zero, Sign, and Overflow, though others exist

= Set flags with arithmetic & logical instructions (implicit) or Compare/Test (explicit)
= Set instructions (setx)

read out flag values (0/1) (op) s, d | cmp a, b |test a, b
- Jump instructions (J*) je sete “Equal” d (op) s == 0 | b-a == 0| b& == 0
. jne setne “Notequal” d (op) s !=0 | b-a !=0]b&a !=0
use flag values to determine - _ .
. . js sets  “Signed” (negative) d (op) s < 0| b-a< 0] b& < 0
next instruction to execute jns setns “Notsigned” (nonnegative) d (op) s >= 0| b-a >= 0 | b& >= 0
® Result of 15t instruction jg setg ‘“Greater d (op) s> O0|b-a> 0]b& > 0
getS Compared aga|n5t 0 jge setge “Greaterorequal” d (op) s >= 0 | b-a >= 0 | b& >= 0
. . jl setl “Less” d (op) s < O] b-a< 0]b& < 0
in a way determined :
d . . jle setle “Lessorequal”’ d (op) s <=0 | b-a< 0] b&a <=0
by 2" Instruction: ja seta  “Above” (unsigned >) d (op) s > oU b >, a b&a > 0OU
jb  setb  “Below” (unsigned <) d (op) s < oU b <, a b&a < OU



https://en.wikipedia.org/wiki/Status_register#Common_flags
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Summary (2/2)

+ Labels (e.g., main, . LO) refer to an instruction address and used as
jump targets in assembly
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Bonus: Compound Conditional Example

if (x < 3 && x == y) {
return 1;

} else {
return 2;

)

cmpg $2, %rdi
setle 3dl
cmpqg $rsi, srdil
sete 3al
testb %al, %dl
je T2

Tl: # x <= 2 && x == y:
movl S$S1, %eax
ret

T2: # else
movl S2, $%$eax
ret

L09: x86-64 Programming Il
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X %rdi

y %rsi
return value  %rax

cmp a, b test a, b

je “Equal” b-a == 0 b&a == 0
jne  “Notequal” b-a I= 0 b&a != 0
js “Signed” (negative) b-a < 0 b&a < 0
jns  “Notsigned” (nonnegative) b-a >= 0 b&a >= 0
jg “Greater” b-a > 0 b&a > 0
jge  “Greater or equal” b-a >= 0 b&a >= 0
jl “Less” b-a < 0 b&a < 0
jle “Lessorequal” b-a < 0 b&a <= 0
ja “Above” (unsigned >) b >, b&a > 0U
jb “Below” (unsigned <) b <, b&a < 0OU

30
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