
CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

The Hardware/Software Interface
x86-64 Programming I

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

http://xkcd.com/409/

http://xkcd.com/409/

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Relevant Course Information

❖ HW5 due tonight, HW6 due Friday, HW7 due Monday

❖ Lab 1a: last chance to submit is tonight @ 11:59 pm

▪ One submission per partnership

▪ Make sure you check the Gradescope autograder output!

▪ Grades hopefully released by end of Sunday (10/12)

❖ Lab 1b due Monday (10/13)

▪ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

▪ Section tomorrow should help with Lab 1b

2

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Getting Help with 351

❖ Lecture recordings, readings, inked slides, section worksheet solutions

❖ Attend lectures and office hours

▪ Can also chat with other students– help each other learn!

❖ Form a study group!

▪ Good for everything but labs, which should be done in pairs

▪ Communicate regularly, use the class terminology, ask and answer each others’
questions, show up to OH together

❖ Post on Ed Discussion

❖ Request a 1-on-1 meeting

▪ Available on a limited basis for special circumstances
3

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

House of Computing Check-In

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks,
Executables

❖ How are programs created and executed
on a CPU?

▪ How does your source code become something
that your computer understands?

▪ How does the CPU organize and manipulate
local data?

4

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Lecture Outline (1/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples

5

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Instruction Set Architectures (Review)

❖ Architecture (ISA): The parts of a processor design that one
needs to understand to write assembly code

▪ What is directly visible to software – the “contract” or “blueprint” between
hardware and software
• The system’s state (e.g., program counter, registers,

memory)

• The set of instructions the CPU can execute

• The effect that each of these instructions will have on
the system state

▪ This is separate from the microarchitecture,
which is the implementation of the architecture
• Take EE/CSE 469 if interested

6

CPU Memory

PC

Registers

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Instruction Set Philosophies (Review)

❖ Complex Instruction Set Computing (CISC): Add more and more
elaborate and specialized instructions as needed

▪ Lots of tools for programmers to use, but hardware must be able to handle all
instructions

▪ x86-64 is CISC, but only a small subset of instructions encountered with Linux
programs

❖ Reduced Instruction Set Computing (RISC): Keep instruction set small and
regular

▪ Easier to build fast hardware

▪ Let software do the complicated operations by composing simpler ones

7

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Mainstream ISAs

8

Windows desktop/laptops
(Core i3, i5, i7, Ryzen)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, Android, Raspberry Pi)
Apple products (ca. 2020-)
(Macbook, Mac Mini)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

C Language

Architecture Sits at the Hardware Interface (1/2)

9

x86-64

Intel Core Ultra 9

Intel Core 2

Intel Core i7

AMD Ryzen

AMD Epyc

GCC

ARMv8
(AArch64/A64) Apple M4

Apple A19

Clang

Your program

Program B

Program A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

ARM Cortex-A72

Product
Example products
using these chips

iPhone 17

Mac Studio

Raspberry Pi 4

Server

Windows
desktop

or laptop

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Architecture Sits at the Hardware Interface (2/2)

10

multstore:
 pushq %rbx
 movq %rdx, %rbx
 call mult2
 movq %rax, (%rbx)
 popq %rbx
 ret

Source Code (hex):
53
48 89 d3
e8 00 00 00 00
48 89 03
5b
c3

GCC

long mult2(long m1, long m2);

void multstore(long x, long y, long* d) {
 long t = mult2(x, y);
 *d = t;

}

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Lecture Outline (2/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples

11

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Writing Assembly Code? Who Does That???

❖ Chances are, you’ll never write a program in assembly, but
assembly is the key to understanding the machine-level execution
model:

▪ Catching bugs where the high-level language model breaks down

▪ Implementing systems software
• What are the “states” of processes that the OS must manage

• Using special units (e.g., timers, I/O co-processors) inside processor!

▪ Fighting malicious software since distributed software is in binary form

▪ Fine-tuning program performance (not relevant anymore)
• Tweaking optimizations that may or may not have been done by the compiler

• Identifying sources of program inefficiency

12

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Assembly Programmer’s View

❖ Programmer-visible state

▪ Program Counter (%rip in x86-64)
• Address of next instruction

▪ General purpose (named) registers
• Heavily used locations for data manipulation

▪ Condition codes
• Store status information about most recent

arithmetic operation and used for conditional
branching

▪ Memory
• Byte-addressable array containing code and

user data

13

Memory

• Code
• Data

Addresses

Data

Instructions

CPU

Registers

Condition Codes

Program Counter

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

x86-64 Assembly Data

❖ Data is moved and manipulated in fixed-length chunks with
treatment determined by instruction

▪ Integral data (e.g., integers, addresses) will use integer operations
• e.g., addq %rax, %rbx

▪ Floating point data uses separate hardware and these instructions are extensions
to x86; not covered in 351
• e.g., addss %xmm0, %xmm1

▪ No aggregate types such as arrays or structures, just contiguously allocated bytes in
memory
• Interesting consequences for implementing higher-level language data structures like objects

14

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

x86-64 Syntax Note

❖ AT&T syntax ✓

▪ Destination operand comes last

▪ Memory specified like:
-0x30(%rcx,%rax,8)

▪ Comments start with ‘#’

▪ Example:
 pushq %rbx
 movq %rdx, %rbx
 call mult2
 movq %rax, (%rbx)
 popq %rbx
 ret

15

❖ Intel syntax

▪ Destination operand comes first

▪ Memory specified like:
[rcx+rax*8-0x30]

▪ Comments start with ‘;’

▪ Example:
 push rbx
 mov rbx, rdx
 call mult2
 mov QWORD PTR [rbx], rax
 pop rbx
 ret

Make sure that you know which one you’re reading!

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

x86-64 Instructions and Sizes (Review)

❖ Common formats: instruction name followed by 1-2 operands,
separated by commas

▪ instr op # e.g., "negq %rsi" negates the value in %rsi

▪ instr src, dst # e.g., "addq %rdi, %rax" does %rax = %rax+%rdi

❖ Size specifier suffixes

▪ b = 1-byte “byte”

▪ w = 2-byte “word”

▪ l = 4-byte “long word”

▪ q = 8-byte “quad word”

16

Due to backward-compatible support for
8086 programs (16-bit machines from

1978!), “word” means 16 bits = 2 bytes
in x86 instruction names…

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Instruction Types (Review)

❖ Three instruction types:

1) Transfer data between memory and register
• Load (%reg = Mem[address]) and store (Mem[address] = %reg)

2) Perform arithmetic/logical operation on register or memory data
• e.g., c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next
• Unconditional jumps and conditional branches

❖ Moving data: mov_ source, destination

▪ Really more of a “copy” than a “move”

▪ Like all instructions, missing letter (_) is the size specifier

▪ Lots of these in typical code
17

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Instructions: Arithmetic & Logical Operations

❖ Unary (one-operand) Instructions:

❖ Binary (two-operand) Instructions:

▪ Beware argument order!

▪ No distinction between signed
and unsigned
• Only arithmetic vs. logical shifts

18

Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Format Computation

incq dst dst = dst + 1 increment

decq dst dst = dst – 1 decrement

negq dst dst = –dst negate

notq dst dst = ~dst bitwise complement

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Polling Questions (1/2)

❖ Which of the following are valid implementations of rcx = rax + rbx?

▪ addq %rax, %rcx
addq %rbx, %rcx

▪ movq $0, %rcx
addq %rbx, %rcx
addq %rax, %rcx

19

▪ movq %rax, %rcx
addq %rbx, %rcx

▪ xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Lecture Outline (3/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples

20

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Operand Types (Review)

❖ Immediate ($): Constant integer data

▪ e.g., $1

❖ Register (%): The name of any of the 16 general-purpose integer
registers

▪ e.g., %rax

❖ Memory (()): A specified address that is usually dereferenced

▪ e.g., (%rax)

21

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Operand Type: Immediate

❖ Conceptually similar to literals in code

❖ Can be specified in decimal or hex

▪ e.g., $0xFF

▪ Decimals can be specified as positive (e.g., $351) or negative (e.g., $-1)

❖ Cannot be used as the destination operand in a binary instruction!

▪ Not a valid location

22

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Operand Type: Register (Review)

❖ A register is a location in the CPU that stores a small amount of
data (a word size) that can be accessed very quickly

▪ A fixed number of them (only 16 general purpose in x86-64)

▪ Registers have names, not addresses

▪ Registers are at the heart of assembly programming

23

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Register Widths (Review)

❖ x86-64 general purpose integer registers (and sub-registers):

▪ Names for smaller divisions refer to least significant bytes
• When used as a destination, leaves upper bytes untouched EXCEPT for 32-bit register

destinations, which zero out the upper 4 bytes

▪ Make sure to use the correct register name for desired data width!
24

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Operand Type: Memory

❖ A way to specify an address in memory

▪ e.g., (%rax), assuming that an address is currently stored in %rax

▪ By default, instructions will dereference the specified address

▪ Size of data is inferred from instruction size

❖ Memory is large, but extremely slow to access

▪ 264-byte address space in a 64-bit machine

▪ 2-3 orders of magnitude slower than register

❖ You cannot have both operands be Memory type

▪ Design decision for performance and encoding reasons

25

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Operand Combination Examples

❖ Actual effect will depend on specifics of the two-operand
instruction used

▪ Immediate is like a literal, Register is like a variable, Memory is like a pointer

Imm→Reg: addq $-42, %rax # like var_rax += -42;

Reg→Reg: subl %eax, %edx # like var_edx -= var_eax;

Mem→Reg: xorq (%rbx), %rax # like var_rax ^= *ptr_rbx;

Imm→Mem: movq $0x3, (%rbx) # like *ptr_rbx = 3;

Reg→Mem: orw %ax, (%rbx) # like *ptr_rbx |= var_ax;

26

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Polling Questions (2/2)

❖ Assume that the register %rax currently holds the value
0x 01 02 03 04 05 06 07 08

❖ Answer the questions on Ed Lessons about the following instruction
(<instr> <src> <dst>):

xorw $-1, %ax

▪ Operation type:

▪ Operand types:

▪ Operation width:

▪ (extra) Result in %rax:

27

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Lecture Outline (4/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples

28

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Example: Basic Arithmetic

29

long arith(long x, long y) {
 return 3*(x+y);
}

Variable Register

x %rdi

y %rsi

return value %rax

y += x;
y *= 3;
long r = y;
return r;

arith:
 addq %rdi, %rsi
 imulq $3, %rsi
 movq %rsi, %rax
 ret

long arith_mod(long x, long y) {
 long t1 = x + y;
 long t2 = t1 * 3;
 return t2;
}

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Example: Using Memory (1/2)

30

Register Variable

 %rdi ⇔ xp

 %rsi ⇔ yp

 %rax ⇔ t0

 %rdx ⇔ t1

void swap (long* xp, long* yp) {
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Compiler Explorer:
https://godbolt.org/z/vjzxr5xb8

https://godbolt.org/z/vjzxr5xb8

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Example: Using Memory (2/2)

31

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Homework Setup Question

❖ Do the following operand types have an implied size?

▪ An immediate operand is a literal/constant (e.g., $3)

▪ A register operand is the value stored in a register (e.g., %rdx)

▪ A memory operand represents an address in memory (e.g., (%rsi))

32

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Summary (1/2)

❖ Assembly programmer-visible state:

❖ x86-64 is a complex instruction set
computing (CISC) architecture

▪ x86-64 integer instruction common forms: instr op and instr src, dst
• Fixed width specified by size suffix: b (1 byte), w (2 bytes), l (4 bytes), or q (8 bytes)

▪ Instruction types:
• Data transfer (e.g., movq (%rsi), %rdx)

• Arithmetic (e.g., imulq $3, %rsi)

• Control Flow (e.g., ret)

33

Memory

• Code
• Data

Addresses

Data

Instructions

CPU

Registers

Condition Codes

Program Counter

CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

Summary (2/2)

❖ x86-64 is a complex instruction set computing (CISC) architecture

▪ x86-64 integer instruction common forms: instr op and instr src, dst
• Fixed width specified by size suffix: b (1 byte), w (2 bytes), l (4 bytes), or q (8 bytes)

▪ Operand types:
• Immediate ($) is a literal (e.g., imulq $3, %rsi)

• Register (%) is a general-purpose integer register or sub-register (e.g., movq (%rsi), %rdx)

• Memory (()) is a way to express an address (e.g., movq (%rsi), %rdx)

34

	Slide 1: The Hardware/Software Interface x86-64 Programming I
	Slide 2: Relevant Course Information
	Slide 3: Getting Help with 351
	Slide 4: House of Computing Check-In
	Slide 5: Lecture Outline (1/4)
	Slide 6: Instruction Set Architectures (Review)
	Slide 7: Instruction Set Philosophies (Review)
	Slide 8: Mainstream ISAs
	Slide 9: Architecture Sits at the Hardware Interface (1/2)
	Slide 10: Architecture Sits at the Hardware Interface (2/2)
	Slide 11: Lecture Outline (2/4)
	Slide 12: Writing Assembly Code? Who Does That???
	Slide 13: Assembly Programmer’s View
	Slide 14: x86-64 Assembly Data
	Slide 15: x86-64 Syntax Note
	Slide 16: x86-64 Instructions and Sizes (Review)
	Slide 17: Instruction Types (Review)
	Slide 18: Instructions: Arithmetic & Logical Operations
	Slide 19: Polling Questions (1/2)
	Slide 20: Lecture Outline (3/4)
	Slide 21: Operand Types (Review)
	Slide 22: Operand Type: Immediate
	Slide 23: Operand Type: Register (Review)
	Slide 24: Register Widths (Review)
	Slide 25: Operand Type: Memory
	Slide 26: Operand Combination Examples
	Slide 27: Polling Questions (2/2)
	Slide 28: Lecture Outline (4/4)
	Slide 29: Example: Basic Arithmetic
	Slide 30: Example: Using Memory (1/2)
	Slide 31: Example: Using Memory (2/2)
	Slide 32: Homework Setup Question
	Slide 33: Summary (1/2)
	Slide 34: Summary (2/2)

