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Relevant Course Information

❖ HW5 due tonight, HW6 due Friday, HW7 due Monday

❖ Lab 1a: last chance to submit is tonight @ 11:59 pm

▪ One submission per partnership

▪ Make sure you check the Gradescope autograder output!

▪ Grades hopefully released by end of Sunday (10/12)

❖ Lab 1b due Monday (10/13)

▪ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

▪ Section tomorrow should help with Lab 1b
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Getting Help with 351

❖ Lecture recordings, readings, inked slides, section worksheet solutions

❖ Attend lectures and office hours

▪ Can also chat with other students– help each other learn!

❖ Form a study group!

▪ Good for everything but labs, which should be done in pairs

▪ Communicate regularly, use the class terminology, ask and answer each others’ 
questions, show up to OH together

❖ Post on Ed Discussion

❖ Request a 1-on-1 meeting

▪ Available on a limited basis for special circumstances
3



CSE351IntroductionL07: x86-64 Programming I CSE351, Autumn 2025

House of Computing Check-In

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks, 
Executables

❖ How are programs created and executed 
on a CPU?

▪ How does your source code become something 
that your computer understands?

▪ How does the CPU organize and manipulate 
local data?
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Lecture Outline (1/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples
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Instruction Set Architectures (Review)

❖ Architecture (ISA):  The parts of a processor design that one 
needs to understand to write assembly code

▪ What is directly visible to software – the “contract” or “blueprint” between 
hardware and software
• The system’s state (e.g., program counter, registers, 

memory)

• The set of instructions the CPU can execute

• The effect that each of these instructions will have on 
the system state

▪ This is separate from the microarchitecture, 
which is the implementation of the architecture
• Take EE/CSE 469 if interested
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Instruction Set Philosophies (Review)

❖ Complex Instruction Set Computing (CISC):  Add more and more 
elaborate and specialized instructions as needed 

▪ Lots of tools for programmers to use, but hardware must be able to handle all 
instructions

▪ x86-64 is CISC, but only a small subset of instructions encountered with Linux 
programs

❖ Reduced Instruction Set Computing (RISC):  Keep instruction set small and 
regular

▪ Easier to build fast hardware

▪ Let software do the complicated operations by composing simpler ones
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Mainstream ISAs
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Windows desktop/laptops
(Core i3, i5, i7, Ryzen)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, Android, Raspberry Pi)
Apple products (ca. 2020-)
(Macbook, Mac Mini)
ARM Instruction Set

Mostly research 
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
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C Language

Architecture Sits at the Hardware Interface (1/2)
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ARMv8 
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Apple A19

Clang

Your program

Program B

Program A

CompilerSource code Architecture
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Architecture Sits at the Hardware Interface (2/2)
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multstore:
 pushq %rbx
 movq %rdx, %rbx
 call mult2
 movq %rax, (%rbx)
 popq %rbx
 ret

Source Code (hex):
53
48 89 d3
e8 00 00 00 00
48 89 03
5b
c3

GCC

long mult2(long m1, long m2);

void multstore(long x, long y, long* d) {
 long t = mult2(x, y);
 *d = t;

}

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different 
implementations

Hardware
Instruction set
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Lecture Outline (2/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples
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Writing Assembly Code?  Who Does That???

❖ Chances are, you’ll never write a program in assembly, but 
assembly is the key to understanding the machine-level execution 
model:

▪ Catching bugs where the high-level language model breaks down

▪ Implementing systems software
• What are the “states” of processes that the OS must manage

• Using special units (e.g., timers, I/O co-processors) inside processor!

▪ Fighting malicious software since distributed software is in binary form

▪ Fine-tuning program performance (not relevant anymore)
• Tweaking optimizations that may or may not have been done by the compiler

• Identifying sources of program inefficiency
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Assembly Programmer’s View

❖ Programmer-visible state

▪ Program Counter (%rip in x86-64)
• Address of next instruction

▪ General purpose (named) registers
• Heavily used locations for data manipulation

▪ Condition codes
• Store status information about most recent 

arithmetic operation and used for conditional 
branching

▪ Memory
• Byte-addressable array containing code and 

user data
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• Data
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x86-64 Assembly Data

❖ Data is moved and manipulated in fixed-length chunks with
treatment determined by instruction

▪ Integral data (e.g., integers, addresses) will use integer operations
• e.g., addq %rax, %rbx

▪ Floating point data uses separate hardware and these instructions are extensions 
to x86; not covered in 351
• e.g., addss %xmm0, %xmm1

▪ No aggregate types such as arrays or structures, just contiguously allocated bytes in 
memory
• Interesting consequences for implementing higher-level language data structures like objects
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x86-64 Syntax Note

❖ AT&T syntax ✓

▪ Destination operand comes last

▪ Memory specified like:
-0x30(%rcx,%rax,8)

▪ Comments start with ‘#’

▪ Example:
  pushq %rbx
  movq %rdx, %rbx
  call mult2
  movq %rax, (%rbx)
  popq %rbx
  ret
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❖ Intel syntax 

▪ Destination operand comes first

▪ Memory specified like:
[rcx+rax*8-0x30]

▪ Comments start with ‘;’

▪ Example:
  push rbx
  mov rbx, rdx
  call mult2
  mov QWORD PTR [rbx], rax
  pop rbx
  ret

Make sure that you know which one you’re reading!
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x86-64 Instructions and Sizes (Review)

❖ Common formats:  instruction name followed by 1-2 operands,
separated by commas

▪ instr op     # e.g., "negq %rsi" negates the value in %rsi

▪ instr src, dst  # e.g., "addq %rdi, %rax" does %rax = %rax+%rdi

❖ Size specifier suffixes

▪ b = 1-byte “byte”

▪ w = 2-byte “word” 

▪ l = 4-byte “long word”

▪ q = 8-byte “quad word”

16

Due to backward-compatible support for 
8086 programs (16-bit machines from 

1978!), “word” means 16 bits = 2 bytes 
in x86 instruction names…   
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Instruction Types (Review)

❖ Three instruction types:

1) Transfer data between memory and register
• Load (%reg = Mem[address]) and store (Mem[address] = %reg)

2) Perform arithmetic/logical operation on register or memory data
• e.g.,  c = a + b;  z = x << y; i = h & g;

3) Control flow:  what instruction to execute next
• Unconditional jumps and conditional branches

❖ Moving data:  mov_ source, destination

▪ Really more of a “copy” than a “move”

▪ Like all instructions, missing letter (_) is the size specifier

▪ Lots of these in typical code
17
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Instructions: Arithmetic & Logical Operations

❖ Unary (one-operand) Instructions:

❖ Binary (two-operand) Instructions:

▪ Beware argument order!

▪ No distinction between signed
and unsigned
• Only arithmetic vs. logical shifts
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Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Format Computation

incq dst dst = dst + 1 increment

decq dst dst = dst – 1 decrement

negq dst dst = –dst negate

notq dst dst = ~dst bitwise complement
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Polling Questions (1/2)

❖ Which of the following are valid implementations of rcx = rax + rbx?

▪ addq %rax, %rcx 
addq %rbx, %rcx

▪ movq $0, %rcx
addq %rbx, %rcx 
addq %rax, %rcx

19

▪ movq %rax, %rcx
addq %rbx, %rcx

▪ xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx
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Lecture Outline (3/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples
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Operand Types (Review)

❖ Immediate ($):  Constant integer data

▪ e.g., $1

❖ Register (%):  The name of any of the 16 general-purpose integer 
registers

▪ e.g., %rax

❖ Memory (()):  A specified address that is usually dereferenced

▪ e.g., (%rax)

21
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Operand Type: Immediate

❖ Conceptually similar to literals in code

❖ Can be specified in decimal or hex

▪ e.g., $0xFF

▪ Decimals can be specified as positive (e.g., $351) or negative (e.g., $-1)

❖ Cannot be used as the destination operand in a binary instruction!

▪ Not a valid location
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Operand Type: Register (Review)

❖ A register is a location in the CPU that stores a small amount of 
data (a word size) that can be accessed very quickly

▪ A fixed number of them (only 16 general purpose in x86-64)

▪ Registers have names, not addresses

▪ Registers are at the heart of assembly programming
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Register Widths (Review)

❖ x86-64 general purpose integer registers (and sub-registers):

▪ Names for smaller divisions refer to least significant bytes
• When used as a destination, leaves upper bytes untouched EXCEPT for 32-bit register 

destinations, which zero out the upper 4 bytes

▪ Make sure to use the correct register name for desired data width!
24
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Operand Type: Memory

❖ A way to specify an address in memory

▪ e.g., (%rax), assuming that an address is currently stored in %rax

▪ By default, instructions will dereference the specified address

▪ Size of data is inferred from instruction size

❖ Memory is large, but extremely slow to access

▪ 264-byte address space in a 64-bit machine

▪ 2-3 orders of magnitude slower than register

❖ You cannot have both operands be Memory type

▪ Design decision for performance and encoding reasons
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Operand Combination Examples

❖ Actual effect will depend on specifics of the two-operand 
instruction used

▪ Immediate is like a literal, Register is like a variable, Memory is like a pointer

Imm→Reg: addq $-42, %rax    # like var_rax += -42;

Reg→Reg: subl %eax, %edx    # like var_edx -= var_eax;

Mem→Reg: xorq (%rbx), %rax  # like var_rax ^= *ptr_rbx;

Imm→Mem: movq $0x3, (%rbx)  # like *ptr_rbx = 3;

Reg→Mem: orw  %ax, (%rbx)   # like *ptr_rbx |= var_ax;

26
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Polling Questions (2/2)

❖ Assume that the register %rax currently holds the value 
0x 01 02 03 04 05 06 07 08

❖ Answer the questions on Ed Lessons about the following instruction 
(<instr> <src> <dst>):

xorw $-1, %ax

▪ Operation type:

▪ Operand types:

▪ Operation width:

▪ (extra) Result in %rax:

27
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Lecture Outline (4/4)

❖ Instruction Set Architectures (ISAs)

❖ x86-64 Syntax and Instructions

❖ x86-64 Operands

❖ First Assembly Examples

28
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Example: Basic Arithmetic

29

long arith(long x, long y) {
  return 3*(x+y);
}

Variable Register

x %rdi

y %rsi

return value %rax

y += x;
y *= 3;
long r = y; 
return r;

arith:
  addq    %rdi, %rsi
  imulq     $3, %rsi
  movq    %rsi, %rax 
  ret

long arith_mod(long x, long y) {
  long t1 = x + y;
  long t2 = t1 * 3;
  return t2;
}
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Example: Using Memory (1/2)
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Register        Variable

 %rdi ⇔  xp

 %rsi ⇔  yp

 %rax ⇔  t0

 %rdx ⇔  t1

void swap (long* xp, long* yp) {
  long t0 = *xp;
  long t1 = *yp;
  *xp = t1;
  *yp = t0;
}

swap:
  movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Compiler Explorer:
https://godbolt.org/z/vjzxr5xb8  

https://godbolt.org/z/vjzxr5xb8
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Example: Using Memory (2/2)
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0x120 

0x118

0x110 

0x108 

0x100 

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:
  movq (%rdi), %rax  #  t0 = *xp

movq (%rsi), %rdx  #  t1 = *yp
movq %rdx, (%rdi)  # *xp =  t1
movq %rax, (%rsi)  # *yp =  t0
ret
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Homework Setup Question

❖ Do the following operand types have an implied size?

▪ An immediate operand is a literal/constant (e.g., $3)

▪ A register operand is the value stored in a register (e.g., %rdx)

▪ A memory operand represents an address in memory (e.g., (%rsi))
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Summary (1/2)

❖ Assembly programmer-visible state:

❖ x86-64 is a complex instruction set 
computing (CISC) architecture

▪ x86-64 integer instruction common forms: instr op  and  instr src, dst
• Fixed width specified by size suffix: b (1 byte), w (2 bytes), l (4 bytes), or q (8 bytes)

▪ Instruction types:
• Data transfer (e.g., movq (%rsi), %rdx)

• Arithmetic (e.g., imulq $3, %rsi) 

• Control Flow (e.g., ret)
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Memory

• Code
• Data

Addresses

Data

Instructions

CPU

Registers

Condition Codes

Program Counter
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Summary (2/2)

❖ x86-64 is a complex instruction set computing (CISC) architecture

▪ x86-64 integer instruction common forms: instr op  and  instr src, dst
• Fixed width specified by size suffix: b (1 byte), w (2 bytes), l (4 bytes), or q (8 bytes)

▪ Operand types:
• Immediate ($) is a literal (e.g., imulq $3, %rsi)

• Register (%) is a general-purpose integer register or sub-register (e.g., movq (%rsi), %rdx)

• Memory (()) is a way to express an address (e.g., movq (%rsi), %rdx)

34
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