
CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

The Hardware/Software Interface
Floating Point
The Hardware/Software Interface
Floating Point

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

http://www.smbc-comics.com/?id=2999

http://www.smbc-comics.com/?id=2999
http://www.smbc-comics.com/?id=2999
http://www.smbc-comics.com/?id=2999

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Relevant Course Information

❖ Lecture polls are graded on completion

▪ Don’t change your answer afterward; misrepresents your understanding

❖ Early Course Reflection available on Canvas now, due Friday

❖ Lab 1a due tonight at 11:59 pm

▪ Submit pointer.c and lab1Asynthesis.txt
• Make sure there are no lingering printf statements in your code!

▪ Make sure you submit something to Gradescope before the deadline and that the
file names are correct

▪ Can use late days to submit up until Wed 11:59 pm

❖ Lab 1b due next Monday (10/13)

▪ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt
2

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Lab 1b Aside: C Macros

❖ C macros basics:

▪ Basic syntax is of the form: #define NAME expression

▪ Allows you to use “NAME” instead of “expression” in code
• Does naïve copy and replace before compilation – everywhere the characters “NAME” appear in

the code, the characters “expression” will now appear instead

• NOT the same as a Java constant

▪ Useful to help with readability/factoring in code

❖ You’ll use C macros in Lab 1b for defining bit masks

▪ See Lab 1b starter code and Lecture 04 (card operations) for examples

3

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

House of Computing Check-In

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, Arrays,
Structs

❖ How do we store information for other
parts of the house of computing to access?

▪ How do we represent data and what limitations
exist?

▪ What design decisions and priorities went into
these encodings?

4

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Number Representation Revisited

❖ What can we represent in one word?

▪ Addresses

▪ Characters and Strings (ASCII)

▪ Signed and Unsigned Integers

❖ How do we encode the following:

▪ Real numbers (e.g., 3.14159)

▪ Very large numbers (e.g., 6.02×1023)

▪ Very small numbers (e.g., 6.626×10-34)

▪ Special numbers (e.g., ∞, NaN)

5

Floating
Point

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Lecture Outline (1/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life

6

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Representation of Fractions (Review)

❖ In decimal, the decimal point signifies the boundary between
integer and fractional parts:

▪ Like leading zeros, can now have trailing zeros to the right of the point

❖ Same ideas apply in binary with the binary point:

7

dd.dddd

101
100 10-1

10-2 10-3 10-4

bb.bbbb

21
20 2-1

2-2 2-3 2-4

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Limits of Representation of Fractions

❖ Limitations:

▪ Given a fixed number of (consecutive) digits, you are limited in range, based on
where you place the point
• e.g., bb.bbbb2 ranges from 0 – 3.9375

▪ Even given an arbitrary number of digits, can only exactly represent numbers of
the form σ𝒑(𝒅𝒑 × 𝒃𝒑)

• 𝑏 is the base, 𝑝 is digit position (which can be negative), and 𝑑𝑝 is the value of that digit’s symbol

▪ Plenty of real and rational numbers cannot be exactly represented using digits:

8

Value Decimal Binary

1/3 0.3333[3]…10 0.010101[01]…2

1/5 0.210 0.0011[0011]…2

𝜋 3.14159…10 11.001001000011111…2

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Scientific Notation (Review)

❖ General form:

▪ Changing power allows us to “shift” the point in the numeral

❖ Normalized form: exactly one digit (non-zero) to left of point

9

numeral × basepower

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Decimal Scientific Notation

❖ Terminology:

▪ Changing power allows us to “shift” the point in the numeral
• Example: 3.51 × 101 = 0.351 × 102 = 35.1 × 100

❖ Normalized form: exactly one digit (non-zero) to left of point

10

6.0210 × 1023

base (radix)decimal point

exponentmantissa

sign

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Binary Scientific Notation

❖ Terminology:

▪ Changing power allows us to “shift” the point in the numeral
• Example: 1.012 × 2-1 = 0.1012 × 20 = 10.12 × 2-2

❖ Normalized form: exactly one digit (non-zero) to left of point

11

1.012 × 2-1

base (radix)binary point

exponentmantissa

sign

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Lecture Outline (2/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life

12

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

IEEE Floating Point

❖ IEEE 754 (established in 1985)

▪ Standard to make numerically-sensitive programs portable

▪ Specifies two things: representation scheme and result of floating point operations

▪ Supported by all major CPUs

❖ Driven by numerical concerns

▪ Users (e.g., scientists, numerical analysts) want them to be as real as possible

▪ Builders want them to be easy to implement and fast

▪ Users mostly won out:
• Nice standards for rounding, overflow, underflow, but... complex for hardware

• Float operations can be an order of magnitude slower than integer ops → so slow that they are
used as a performance gauge! (e.g., FLOPS/s)

13

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point Encoding (Review)

❖ C variable declared as float

❖ Use normalized, base 2 scientific notation:

▪ Value: ±1 × Mantissa × 2Exponent

▪ Bit Fields: (-1)S × 1.M × 2(E–bias)

❖ Representation Scheme:

▪ Sign (bit S is 0 if positive, 1 if negative)

▪ Mantissa is the fractional part of the normalized number; encoded in bit vector M

▪ Exponent weights the value by a power of 2; encoded in the bit vector E

14

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

The Exponent Field (Review)

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly half positive and half negative

▪ E = Exp + bias Exp = E – bias

❖ Examples:

▪ If value has Exp = 1, then encode 1 + 127 in unsigned, storing E = 0b 1000 0000

▪ If float has E = 0b 0100 0000, then we read out 64 as unsigned, shift this value to
get Exp = 64 − 127 = −63

15

E: (unsigned)

Exp: (biased)

-127

0

128

255

–bias

+bias

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

The Exponent Field – Why Biased?

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly half positive and half negative

▪ E = Exp + bias Exp = E – bias

❖ Why biased?

▪ Sign-and-magnitude: encodings for Exp+Man are aligned with magnitude

▪ Makes floating point arithmetic easier (somewhat compatible with two’s
complement hardware)

16

E: (unsigned)

Exp: (biased)

-127

0

128

255

–bias

+bias

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

The Mantissa/Fraction Field (Review)

❖ Note the implicit leading 1 in front of the M bit vector

▪ Gives us an extra bit of precision

❖ Examples:

▪ Man of 1.101112 is encoded as M = 0b 101 1100 0000 0000 0000 0000

▪ M = 110 1000 0000 0000 0000 0000 is decoded as a Man = 1.11012

17

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Normalized Floating Point Conversions (Review)

❖ FP → Decimal

1. Append the bits of M to implicit
leading 1 to form the mantissa.

2. Multiply the mantissa by 2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the exponent by
shifting the binary point.

5. Convert from binary to decimal.

18

❖ Decimal → FP

1. Convert decimal to binary.

2. Convert binary to normalized
scientific notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent and
encode E as unsigned.

5. The first bits after the leading 1 that
fit are encoded into M.

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Polling Questions (1/2)

❖ What is the value encoded by the following floating point number?

0b 0 | 1000 0000 | 110 0000 0000 0000 0000 0000

▪ bias = 2w-1-1

▪ exponent = E – bias

▪ mantissa = 1.M

❖ Convert the decimal number -7.375 = -1.11011 x 22 into floating point
representation.

19

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Lecture Outline (3/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life

20

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Special Cases

❖ But wait… what happened to zero?

▪ Special case: E and M all zeros = 0

▪ Two zeros (sign and magnitude), but at least 0x00000000 = 0 like integers

❖ E = 0xFF, M = 0: ± ∞

▪ e.g., division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0: Not a Number (NaN)

▪ e.g., square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging

21

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

New Representation Limits (Review)

❖ New largest value (besides ∞)?

▪ E = 0xFF taken; next largest is E = 0xFE

▪ Largest will have M = 0b1…1 → 1.1…12×2254-127 = 2128 – 2104

❖ New value closest to 0:

▪ E = 0x00 taken; next smallest is E = 0x01

▪ Smallest will have M = 0 → 1.0…02×21-127 = 2-126

❖ Can we go smaller?

▪ Normalization and implicit 1 are to blame

22

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Denorm Numbers

❖ Special case: E = 0, M ≠ 0 are denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero and the smallest
normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized number

23

So much
closer to 0

This is extra (non-
testable) material

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point Special Case Summary

E M Interpretation

0b0…0 0b0…0 ± 0

0b0…0 non-zero ± denormalized num

everything else anything ± normalized num

0b1…1 0b0…0 ± ∞

0b1…1 non-zero NaN

FP Bits
What is the
value of E?

What is the
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Lecture Outline (4/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life

25

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Distribution of Representable Values (Review)

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the next largest representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser closer to zero:

26

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Precision and Accuracy

❖ Accuracy is a measure of the difference between the actual value
of a number and its computer representation

❖ Precision is a count of the number of bits in a computer word used to
represent a value

▪ Capacity for accuracy

❖ High precision permits high accuracy but doesn’t guarantee it

▪ Example: float pi = 3.14; will be represented using all 24 bits of the mantissa
(highly precise), but is only an approximation (not accurate)

27

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Need Greater Precision?

❖ Double Precision (vs. Single Precision) in 64 bits

▪ C variable declared as double

▪ Exponent bias is now 210–1 = 1023

▪ Advantages: greater precision (larger mantissa),
 greater range (larger exponent)

▪ Disadvantages: more bits used,
 slower to manipulate

28

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point Arithmetic (Review)

❖ Basic theoretical idea for floating point operations like + and ×:

1) First, compute the exact result

2) Then encode the result based on the specifics of your representation
• If exponent is outside of range, then you will get over/underflow

• If the exact result is not representable, then it will get rounded to fit the precision (width of M)

29

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Properties of Floating Point Arithmetic (Review)

❖ Floats with value ±∞ and NaN can be used in operations

▪ Result usually still ±∞ or NaN, but not always intuitive

❖ Floating point operations do not work like real math, due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)

 0 3.14

▪ Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

 30.000000000000003553 30

▪ Not cumulative: repeatedly adding a small number to a large one may do nothing

❖ Equality (==) comparisons between floating point numbers are tricky,
and often return unexpected results, so just avoid them!

30

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point in C

❖ Two common data types: float, double

❖ Floating point literals indicated by decimal point (double by default)

▪ Examples: 1.0 (double), 1.0f (float)

❖ Related libraries:

▪ math.h for INFINITY and NAN constants, float.h for additional constants

❖ Casting between int, float, and double changes the bit
representation

▪ Tries to preserve the value, but not always reversible

▪ Integral → floating point: may get rounded if not enough precision

▪ Floating point → integral: fractional part will get lost/truncated

31

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Polling Questions (2/2)

❖ For the following code, what is the smallest value of n that will encounter
a limit of representation?

 float f = 1.0; // 2^0
 for (int i = 0; i < n; ++i)
 f *= 1024; // 1024 = 2^10
 printf("f = %f\n", f);

32

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Lecture Outline (5/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life

33

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point Issues in Real Life

❖ 1991: Patriot missile targeting error
▪ Time in system stored in integer (tenths of a second since boot)

▪ Converted to seconds by multiplying by 0.1 = 0.0 00112 leading
to erroneous time (error grows the longer system has been on)

❖ 1996: V88 Ariane 501 rocket exploded 37 seconds after launch
▪ Reused code from Ariane 4 inertial reference platform
▪ Overflow when converting a 64-bit floating point number

to a 16-bit integer (not protected by extra lines of code)

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 50% error in less than 2 years due to truncation

▪ 1994: Intel Pentium FDIV (floating point division) hardware bug costs company
$475 million in recall

34

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

More on Floating Point History

❖ Early days

▪ First design with floating-point arithmetic in 1914 by Leonardo
Torres y Quevedo

▪ Implementations started in 1940 by Konrad Zuse, but with differing
field lengths (usually not summing to 32 bits) and different subsets
of the special cases

❖ IEEE 754 standard created in 1985

▪ Primary architect was William Kahan, who won a Turing Award for
this work

▪ Standardized bit encoding, well-defined behavior for all arithmetic
operations

35

Kahan

Zuse

Quevedo

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point in the “Wild”

❖ 3 formats from IEEE 754 standard widely used in computer hardware and
languages

▪ In C, called float, double, long double

❖ Common applications:

▪ 3D graphics: textures, rendering, rotation, translation

▪ “Big Data”: scientific computing at scale, machine learning

❖ Non-standard formats in domain-specific areas:

▪ Bfloat16: training ML models;
range more valuable than precision

▪ TensorFloat-32: Nvidia-specific
hardware for Tensor Core GPUs

36

Type S bits E bits M bits Total bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Summary (1/2)

❖ Floating point approximates real numbers (large, small, & special):

▪ Normalized case: ±1 × Mantissa × 2Exponent = (-1)S × 1.M × 2(E–bias)

▪ Mantissa approximates fractional portion
• Size of mantissa field determines our

representable precision

• Exceeding mantissa length causes rounding

▪ Exponent in biased notation (bias = 2w-1 – 1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

▪ double (64 bits: [S (1)|E (11)|M (52)]) available if more precision needed

37

S E (8) M (23)
31 30 23 22 0

E M Meaning

0b0…0 anything ± denorm num
(including 0)

anything else anything ± norm num
0b1…1 0 ± ∞
0b1…1 non-zero NaN

CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Summary (2/2)

❖ Limitations of FP affect programmers all the time (!)

▪ Overflow, underflow, rounding
• Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of

the exponent

▪ Floating point arithmetic is NOT associative or distributive
• ∞ and NaN are valid operands, but can produce unintuitive results

▪ Do NOT use equality (==) with floating point numbers

▪ Converting between integral and floating point data types does change the bits
• e.g., int i = 2; // stored as 0x00000002,

 float f = i; // stored as 0x40000000
38

	Slide 1: The Hardware/Software Interface Floating Point
	Slide 2: Relevant Course Information
	Slide 3: Lab 1b Aside: C Macros
	Slide 4: House of Computing Check-In
	Slide 5: Number Representation Revisited
	Slide 6: Lecture Outline (1/5)
	Slide 7: Representation of Fractions (Review)
	Slide 8: Limits of Representation of Fractions
	Slide 9: Scientific Notation (Review)
	Slide 10: Decimal Scientific Notation
	Slide 11: Binary Scientific Notation
	Slide 12: Lecture Outline (2/5)
	Slide 13: IEEE Floating Point
	Slide 14: Floating Point Encoding (Review)
	Slide 15: The Exponent Field (Review)
	Slide 16: The Exponent Field – Why Biased?
	Slide 17: The Mantissa/Fraction Field (Review)
	Slide 18: Normalized Floating Point Conversions (Review)
	Slide 19: Polling Questions (1/2)
	Slide 20: Lecture Outline (3/5)
	Slide 21: Special Cases
	Slide 22: New Representation Limits (Review)
	Slide 23: Denorm Numbers
	Slide 24: Floating Point Special Case Summary
	Slide 25: Lecture Outline (4/5)
	Slide 26: Distribution of Representable Values (Review)
	Slide 27: Precision and Accuracy
	Slide 28: Need Greater Precision?
	Slide 29: Floating Point Arithmetic (Review)
	Slide 30: Properties of Floating Point Arithmetic (Review)
	Slide 31: Floating Point in C
	Slide 32: Polling Questions (2/2)
	Slide 33: Lecture Outline (5/5)
	Slide 34: Floating Point Issues in Real Life
	Slide 35: More on Floating Point History
	Slide 36: Floating Point in the “Wild”
	Slide 37: Summary (1/2)
	Slide 38: Summary (2/2)

