The Hardware/Software Interface

Floating Point

Instructors:

Justin Hsia, Amber Hu

Teaching Assistants:

Anthony Mangus Divya

Grace Zhou

Jiuyang Lyu

Kurt Gu

Mendel Carroll

Naama Amiel

Rose Maresh

Violet Monserate

Divya Ramu

Jessie Sun

Kanishka Singh

Liander Rainbolt

Ming Yan

Pollux Chen

Soham Bhosale

CSE351, Autumn 2025

http://www.smbc-comics.com/?id=2999

Relevant Course Information

- Lecture polls are graded on completion
 - Don't change your answer afterward; misrepresents your understanding
- Early Course Reflection available on Canvas now, due Friday
- Lab 1a due tonight at 11:59 pm
 - Submit pointer.c and lab1Asynthesis.txt
 - Make sure there are no lingering printf statements in your code!
 - Make sure you submit something to Gradescope before the deadline and that the file names are correct
 - Can use late days to submit up until Wed 11:59 pm
- Lab 1b due next Monday (10/13)
 - Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

Lab 1b Aside: C Macros

- C macros basics:
 - Basic syntax is of the form: #define NAME expression
 - Allows you to use "NAME" instead of "expression" in code
 - Does naïve copy and replace *before* compilation everywhere the characters "NAME" appear in the code, the characters "expression" will now appear instead
 - NOT the same as a Java constant
 - Useful to help with readability/factoring in code
- You'll use C macros in Lab 1b for defining bit masks
 - See Lab 1b starter code and Lecture 04 (card operations) for examples

House of Computing Check-In

- Topic Group 1: Data
 - Memory, Data, Integers, Floating Point, Arrays, Structs

- How do we store information for other parts of the house of computing to access?
 - How do we represent data and what limitations exist?
 - What design decisions and priorities went into these encodings?

Transistors, Gates, Digital Systems

Physics

Number Representation Revisited

- What can we represent in one word?
 - Addresses
 - Characters and Strings (ASCII)
 - Signed and Unsigned Integers
- How do we encode the following:
 - Real numbers (e.g., 3.14159)
 - Very large numbers (e.g., 6.02×10²³)
 - Very small numbers (e.g., 6.626×10⁻³⁴)
 - Special numbers (e.g., ∞, NaN)

Lecture Outline (1/5)

- Scientific Notation
- IEEE 754 Floating Point Encoding
- Floating Point Special Cases
- Floating Point Limitations and Dangers
- Floating Point in Real Life

Representation of Fractions (Review)

- In decimal, the decimal point signifies the boundary between integer and fractional parts:
 - Like leading zeros, can now have trailing zeros to the right of the point

Same ideas apply in binary with the binary point:

Limits of Representation of Fractions

Limitations:

- Given a fixed number of (consecutive) digits, you are limited in range, based on where you place the point
 - e.g., $bb.bbb_2$ ranges from 0-3.9375
- Even given an arbitrary number of digits, can only exactly represent numbers of the form $\sum_p (d_p \times b^p)$
 - b is the base, p is digit position (which can be negative), and d_p is the value of that digit's symbol
- Plenty of real and rational numbers cannot be exactly represented using digits:

Value	Decimal	Binary
1/3	0.3333[3] ₁₀	0.010101[01] ₂
1/5	0.2 ₁₀	0.0011[0011] ₂
π	3.14159 ₁₀	11.0010010000111112

Scientific Notation (Review)

General form:

numeral × basepower

Changing power allows us to "shift" the point in the numeral

* Normalized form: exactly one digit (non-zero) to left of point

Decimal Scientific Notation

* Terminology: mantissa exponent sign $\longrightarrow 06.02_{10} \times 10^{23}$ base (radix)

- Changing power allows us to "shift" the point in the numeral
 - Example: $3.51 \times 10^1 = 0.351 \times 10^2 = 35.1 \times 10^0$
- Normalized form: exactly one digit (non-zero) to left of point

Binary Scientific Notation

- Changing power allows us to "shift" the point in the numeral
 - Example: $1.01_2 \times 2^{-1} = 0.101_2 \times 2^0 = 10.1_2 \times 2^{-2}$
- Normalized form: exactly one digit (non-zero) to left of point

Lecture Outline (2/5)

- Scientific Notation
- IEEE 754 Floating Point Encoding
- Floating Point Special Cases
- Floating Point Limitations and Dangers
- Floating Point in Real Life

IEEE Floating Point

- IEEE 754 (established in 1985)
 - Standard to make numerically-sensitive programs portable
 - Specifies two things: representation scheme and result of floating point operations
 - Supported by all major CPUs
- Driven by numerical concerns
 - Users (e.g., scientists, numerical analysts) want them to be as real as possible
 - Builders want them to be **easy to implement** and **fast**
 - Users mostly won out:
 - Nice standards for rounding, overflow, underflow, but... complex for hardware
 - Float operations can be an order of magnitude slower than integer ops \rightarrow so slow that they are used as a performance gauge! (e.g., FLOPS/s)

Floating Point Encoding (Review)

- C variable declared as float
- Use normalized, base 2 scientific notation:
 - Value: ±1 × Mantissa × 2^{Exponent}
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign (bit S is 0 if positive, 1 if negative)
 - Mantissa is the fractional part of the normalized number; encoded in bit vector M
 - Exponent weights the value by a power of 2; encoded in the bit vector E

The Exponent Field (Review)

Use biased notation

- Read exponent as unsigned, but with *bias* of 2^{w-1}-1 = 127
- Representable exponents roughly half positive and half negative
- $E = Exp + bias \leftrightarrow Exp = E bias$

Examples:

- If value has Exp = 1, then *encode* 1 + 127 in unsigned, storing E = 0b 1000 0000
- If float has $E = 0b \ 0100 \ 0000$, then we read out 64 as unsigned, shift this value to get Exp = 64 127 = -63

The Exponent Field – Why Biased?

Use biased notation

- Read exponent as unsigned, but with *bias* of 2^{w-1}-1 = 127
- Representable exponents roughly half positive and half negative
- $E = Exp + bias \leftrightarrow Exp = E bias$

Why biased?

- Sign-and-magnitude: encodings for Exp+Man are aligned with magnitude
- Makes floating point arithmetic easier (somewhat compatible with two's complement hardware)

The Mantissa/Fraction Field (Review)

- Note the implicit leading 1 in front of the M bit vector
 - Gives us an extra bit of precision
- Examples:
 - Man of 1.10111₂ is encoded as M = 0b 101 1100 0000 0000 0000 0000
 - M = $\underline{110} \, \underline{1000} \, 0000 \, 0000 \, 0000 \, 0000$ is decoded as a Man = $1.\underline{1101}_{2}$

Normalized Floating Point Conversions (Review)

- ❖ FP → Decimal
 - 1. Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign (-1)^S.
 - 4. Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

- ◆ Decimal → FP
 - 1. Convert decimal to binary.
 - 2. Convert binary to normalized scientific notation.
 - 3. Encode sign as S(0/1).
 - 4. Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Polling Questions (1/2)

 $2^{-1} = 0.5$ $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$

What is the value encoded by the following floating point number?

- bias = $2^{\sqrt[8]{-1}} 1 = 2^{7} 1 = 127$
- exponent = $E bias = 2^{7} 127 = 128 127 = 1$
- mantissa = 1.M = $1.110...0_2$

$$(-1)^{\circ} \times 1.11_{2} \times 2^{1} = 11.1_{2} = [+3.5]$$

* Convert the decimal number -7.375 = -1.11011 x 2^2 into floating point representation. S = 1, E = 2 + 127 = 129 = 06 100 0001, M = 06 11014 0 ... 0

Lecture Outline (3/5)

- Scientific Notation
- ❖ IEEE 754 Floating Point Encoding
- Floating Point Special Cases
- Floating Point Limitations and Dangers
- Floating Point in Real Life

Special Cases

- But wait... what happened to zero?
 - Special case: E and M all zeros = 0
 - Two zeros (sign and magnitude), but at least 0x00000000 = 0 like integers
- \star E = 0xFF, M = 0: $\pm \infty$
 - e.g., division by 0
 - Still work in comparisons!
- \clubsuit E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g., square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)

CSE351, Autumn 2025

New Representation Limits (Review)

- New largest value (besides ∞)?
 - E = 0xFF taken; next largest is E = 0xFE
 - Largest will have M = $0b1...1 \rightarrow 1.1...1_{2} \times 2^{254-127} = 2^{128} 2^{104}$
- New value closest to 0:
 - E = 0x00 taken; next smallest is E = 0x01
 - Smallest will have $M = 0 \rightarrow 1.0...0_2 \times 2^{1-127} = 2^{-126}$
- Can we go smaller?
 - Normalization and implicit 1 are to blame

Denorm Numbers

This is extra (nontestable) material

- * Special case: E = 0, $M \neq 0$ are denormalized numbers
 - No leading 1

W UNIVERSITY of WASHINGTON

- Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - So much ■ Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$ ■ Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$ closer to 0
 - - There is still a gap between zero and the smallest denormalized number

Floating Point Special Case Summary

E	M	Interpretation	
0b00	0b00	± 0	
0b00	non-zero	± denormalized num	
everything else	anything	± normalized num	
0b11	0b00	± ∞	
0b11	non-zero	NaN	

Lecture Outline (4/5)

- Scientific Notation
- ❖ IEEE 754 Floating Point Encoding
- Floating Point Special Cases
- Floating Point Limitations and Dangers
- Floating Point in Real Life

Distribution of Representable Values (Review)

- What ranges are NOT representable?
 - Between largest norm and infinity
 - Between zero and smallest denorm
 - Between norm numbers?

- **Overflow** (Exp too large)
- **Underflow** (Exp too small)
- Rounding
- Given a FP number, what's the next largest representable number?
 - What is this "step" when Exp = 0? 2^{-23}
 - What is this "step" when Exp = 100?

- if M=060...00, then $2^{Exp} \times 1.0$ if M=060...01, then $2^{Exp} \times (1+2^{-23})$ $dff = 2^{Exp-23}$
- Distribution of values is denser closer to zero:

Precision and Accuracy

- Accuracy is a measure of the difference between the actual value of a number and its computer representation
- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- High precision permits high accuracy but doesn't guarantee it
 - <u>Example</u>: **float** pi = 3.14; will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$, bias = $2^{10}-1$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Floating Point Arithmetic (Review)

Value =
$$(-1)^{s}$$
×Mantissa×2^{Exponent}

- Basic theoretical idea for floating point operations like + and ×:
 - 1) First, compute the exact result
 - 2) Then encode the result based on the specifics of your representation
 - If exponent is outside of range, then you will get over/underflow
 - If the exact result is not representable, then it will get rounded to fit the precision (width of M)

Properties of Floating Point Arithmetic (Review)

- * Floats with value $\pm \infty$ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- ❖ Floating point operations do not work like real math, due to rounding
 - Not <u>associative</u>: (3.14+1e100) -1e100 != 3.14+(1e100-1e100)

0 3.14

• Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.00000000000003553 30

- Not <u>cumulative</u>: repeatedly adding a small number to a large one may do nothing
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

instead use abs
$$(f1-f2) < 2^{-20}$$

come arbitrary threshold

Floating Point in C

- Two common data types: float, double
- Floating point literals indicated by decimal point (double by default)
 - Examples: 1.0 (double), 1.0f (float)
- Related libraries:
 - math.h for INFINITY and NAN constants, float.h for additional constants
- Casting between int, float, and double changes the bit representation
 - Tries to preserve the value, but not always reversible
 - Integral → floating point: may get rounded if not enough precision
 - Floating point → integral: fractional part will get lost/truncated

Polling Questions (2/2)

For the following code, what is the smallest value of n that will encounter a limit of representation?

```
float f = 1.0; // 2^{0}

for (int i = 0; i < n; ++i)

f *= 1024; // 1024 = 2^{10}

printf("f = \%f \setminus n", f);

E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{nex} = 0 \times FE, E_{x}P_{nex} = 254 - 127 = 127
E_{x}P_{nex} = 0 \times FE
```

Lecture Outline (5/5)

- Scientific Notation
- ❖ IEEE 754 Floating Point Encoding
- Floating Point Special Cases
- Floating Point Limitations and Dangers
- Floating Point in Real Life

Floating Point Issues in Real Life

- 4 1991: Patriot missile targeting error
 - Time in system stored in integer (tenths of a second since boot)
 - Converted to seconds by multiplying by $0.1 = 0.0\ 0011_2$ leading to erroneous time (error grows the longer system has been on)

- 1996: V88 Ariane 501 rocket exploded 37 seconds after launch
 - Reused code from Ariane 4 inertial reference platform
 - Overflow when converting a 64-bit floating point number to a 16-bit integer (not protected by extra lines of code)

Other related bugs:

- 1982: Vancouver Stock Exchange 50% error in less than 2 years due to truncation
- 1994: Intel Pentium FDIV (floating point division) hardware bug costs company \$475 million in recall

More on Floating Point History

Early days

- First design with floating-point arithmetic in 1914 by Leonardo Torres y Quevedo
- Implementations started in 1940 by Konrad Zuse, but with differing field lengths (usually not summing to 32 bits) and different subsets of the special cases

- Primary architect was William Kahan, who won a Turing Award for this work
- Standardized bit encoding, well-defined behavior for all arithmetic operations

Floating Point in the "Wild"

- 3 formats from IEEE 754 standard widely used in computer hardware and languages
 - In C, called float, double, long double
- Common applications:
 - 3D graphics: textures, rendering, rotation, translation
 - "Big Data": scientific computing at scale, machine learning
- Non-standard formats in domain-specific areas:
 - Bfloat16: training ML models;
 range more valuable than precision
 - TensorFloat-32: Nvidia-specific hardware for Tensor Core GPUs

Туре	S bits	E bits	M bits	Total bits
Half-precision	1	5	10	16
Bfloat16	1	8	7	16
TensorFloat-32	1	8	10	19
Single-precision	1	8	23	32

Summary (1/2)

W UNIVERSITY of WASHINGTON

Floating point approximates real numbers (large, small, & special):

- Normalized case: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}} = (-1)^{\text{S}} \times 1.\text{M} \times 2^{(\text{E-bias})}$
- Mantissa approximates fractional portion
 - Size of mantissa field determines our representable *precision*
 - Exceeding mantissa length causes rounding
- **Exponent** in biased notation (bias = $2^{w-1} 1$)

E	M	Meaning	
0b00	anything	± denorm num (including 0)	
anything else	anything	± norm num	
0b11	0	± ∞	
0b11	non-zero	NaN	

- Size of exponent field determines our representable range
- Outside of representable exponents is overflow and underflow
- double (64 bits: [S (1) | E (11) | M (52)]) available if more precision needed

Summary (2/2)

- Limitations of FP affect programmers all the time (!)
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent

- Floating point arithmetic is NOT associative or distributive
 - ∞ and NaN are valid operands, but can produce unintuitive results
- Do NOT use equality (==) with floating point numbers
- Converting between integral and floating point data types does change the bits

```
• e.g., int i = 2; // stored as 0x00000002,
float f = i; // stored as 0x40000000
```