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Relevant Course Information

❖ Lecture polls are graded on completion

▪ Don’t change your answer afterward; misrepresents your understanding

❖ Early Course Reflection available on Canvas now, due Friday

❖ Lab 1a due tonight at 11:59 pm

▪ Submit pointer.c and lab1Asynthesis.txt
• Make sure there are no lingering printf statements in your code!

▪ Make sure you submit something to Gradescope before the deadline and that the 
file names are correct

▪ Can use late days to submit up until Wed 11:59 pm

❖ Lab 1b due next Monday (10/13)

▪ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt
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Lab 1b Aside: C Macros

❖ C macros basics:

▪ Basic syntax is of the form:  #define NAME expression

▪ Allows you to use “NAME” instead of “expression” in code
• Does naïve copy and replace before compilation – everywhere the characters “NAME” appear in 

the code, the characters “expression” will now appear instead

• NOT the same as a Java constant

▪ Useful to help with readability/factoring in code

❖ You’ll use C macros in Lab 1b for defining bit masks

▪ See Lab 1b starter code and Lecture 04 (card operations) for examples

3
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House of Computing Check-In

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, Arrays, 
Structs

❖ How do we store information for other 
parts of the house of computing to access?

▪ How do we represent data and what limitations 
exist?

▪ What design decisions and priorities went into 
these encodings?
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Number Representation Revisited

❖ What can we represent in one word?

▪ Addresses

▪ Characters and Strings (ASCII)

▪ Signed and Unsigned Integers

❖ How do we encode the following:

▪ Real numbers (e.g., 3.14159)

▪ Very large numbers (e.g., 6.02×1023)

▪ Very small numbers (e.g., 6.626×10-34)

▪ Special numbers (e.g., ∞, NaN)

5
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Lecture Outline (1/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life
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Representation of Fractions (Review)

❖ In decimal, the decimal point signifies the boundary between 
integer and fractional parts:

▪ Like leading zeros, can now have trailing zeros to the right of the point

❖ Same ideas apply in binary with the binary point:
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dd.dddd

101
100 10-1

10-2 10-3 10-4

bb.bbbb

21
20 2-1

2-2 2-3 2-4
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Limits of Representation of Fractions

❖ Limitations:

▪ Given a fixed number of (consecutive) digits, you are limited in range, based on 
where you place the point
• e.g., bb.bbbb2 ranges from 0 – 3.9375

▪ Even given an arbitrary number of digits, can only exactly represent numbers of 
the form σ𝒑(𝒅𝒑 × 𝒃𝒑)

• 𝑏 is the base, 𝑝 is digit position (which can be negative), and 𝑑𝑝 is the value of that digit’s symbol

▪ Plenty of real and rational numbers cannot be exactly represented using digits:

8

Value Decimal Binary

1/3 0.3333[3]…10 0.010101[01]…2

1/5 0.210 0.0011[0011]…2

𝜋 3.14159…10 11.001001000011111…2
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Scientific Notation (Review)

❖ General form:

▪ Changing power allows us to “shift” the point in the numeral

❖ Normalized form:  exactly one digit (non-zero) to left of point

9

numeral × basepower
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Decimal Scientific Notation

❖ Terminology:

▪ Changing power allows us to “shift” the point in the numeral
• Example: 3.51 × 101 = 0.351 × 102 = 35.1 × 100

❖ Normalized form:  exactly one digit (non-zero) to left of point
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6.0210 × 1023

base (radix)decimal point

exponentmantissa

sign
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Binary Scientific Notation

❖ Terminology:

▪ Changing power allows us to “shift” the point in the numeral
• Example: 1.012 × 2-1 = 0.1012 × 20 = 10.12 × 2-2

❖ Normalized form:  exactly one digit (non-zero) to left of point

11

1.012   ×   2-1

base (radix)binary point

exponentmantissa

sign
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Lecture Outline (2/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life

12



CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

IEEE Floating Point

❖ IEEE 754 (established in 1985)

▪ Standard to make numerically-sensitive programs portable

▪ Specifies two things: representation scheme and result of floating point operations

▪ Supported by all major CPUs

❖ Driven by numerical concerns

▪ Users (e.g., scientists, numerical analysts) want them to be as real as possible

▪ Builders want them to be easy to implement and fast

▪ Users mostly won out:
• Nice standards for rounding, overflow, underflow, but... complex for hardware

• Float operations can be an order of magnitude slower than integer ops → so slow that they are 
used as a performance gauge! (e.g., FLOPS/s)
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Floating Point Encoding (Review)

❖ C variable declared as float

❖ Use normalized, base 2 scientific notation:

▪ Value:  ±1 × Mantissa × 2Exponent

▪ Bit Fields: (-1)S × 1.M × 2(E–bias)

❖ Representation Scheme:

▪ Sign (bit S is 0 if positive, 1 if negative)

▪ Mantissa is the fractional part of the normalized number; encoded in bit vector M

▪ Exponent weights the value by a power of 2; encoded in the bit vector E

14

S E M
31 30 23 22 0

1 bit 8 bits 23 bits



CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

The Exponent Field (Review)

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly half positive and half negative

▪ E = Exp + bias  Exp = E – bias

❖ Examples:

▪ If value has Exp = 1, then encode 1 + 127 in unsigned, storing E = 0b 1000 0000

▪ If float has E = 0b 0100 0000, then we read out 64 as unsigned, shift this value to 
get Exp = 64 − 127 = −63

15

E: (unsigned)

Exp: (biased)

-127

0

128

255

–bias

+bias
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The Exponent Field – Why Biased?

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly half positive and half negative

▪ E = Exp + bias  Exp = E – bias

❖ Why biased?

▪ Sign-and-magnitude: encodings for Exp+Man are aligned with magnitude

▪ Makes floating point arithmetic easier (somewhat compatible with two’s 
complement hardware)

16

E: (unsigned)

Exp: (biased)

-127

0

128

255

–bias

+bias
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The Mantissa/Fraction Field (Review)

❖ Note the implicit leading 1 in front of the M bit vector

▪ Gives us an extra bit of precision

❖ Examples:

▪ Man of 1.101112 is encoded as M = 0b 101 1100 0000 0000 0000 0000

▪ M = 110 1000 0000 0000 0000 0000  is decoded as a Man = 1.11012

17

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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Normalized Floating Point Conversions (Review)

❖ FP → Decimal

1. Append the bits of M to implicit 
leading 1 to form the mantissa.

2. Multiply the mantissa by 2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the exponent by 
shifting the binary point.

5. Convert from binary to decimal.
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❖ Decimal → FP

1. Convert decimal to binary.

2. Convert binary to normalized 
scientific notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent and 
encode E as unsigned.

5. The first bits after the leading 1 that 
fit are encoded into M.
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Polling Questions (1/2)

❖ What is the value encoded by the following floating point number?

0b  0 | 1000 0000 | 110 0000 0000 0000 0000 0000

▪ bias = 2w-1-1

▪ exponent = E – bias

▪ mantissa = 1.M

❖ Convert the decimal number -7.375 = -1.11011 x 22 into floating point 
representation.

19

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625
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Lecture Outline (3/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life
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Special Cases

❖ But wait… what happened to zero?

▪ Special case:  E and M all zeros = 0

▪ Two zeros (sign and magnitude), but at least 0x00000000 = 0 like integers

❖ E = 0xFF, M = 0:  ± ∞

▪ e.g., division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0:  Not a Number (NaN)

▪ e.g., square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging

21
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New Representation Limits (Review)

❖ New largest value (besides ∞)?

▪ E = 0xFF taken; next largest is E = 0xFE

▪ Largest will have M = 0b1…1 → 1.1…12×2254-127 = 2128 – 2104

❖ New value closest to 0:

▪ E = 0x00 taken; next smallest is E = 0x01

▪ Smallest will have M = 0 → 1.0…02×21-127 = 2-126

❖ Can we go smaller?

▪ Normalization and implicit 1 are to blame

22
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Denorm Numbers

❖ Special case: E = 0, M ≠ 0 are denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero and the smallest 
normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized number

23

So much
closer to 0

This is extra (non-
testable) material
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Floating Point Special Case Summary

E M Interpretation

0b0…0 0b0…0 ± 0

0b0…0 non-zero ± denormalized num

everything else anything ± normalized num

0b1…1 0b0…0 ± ∞

0b1…1 non-zero NaN

FP Bits
What is the 
value of E?

What is the 
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything 
else

all 0’s

= special case
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Lecture Outline (4/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life
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Distribution of Representable Values (Review)

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the next largest representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser closer to zero:

26

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)

Underflow (Exp too small)

Rounding
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Precision and Accuracy

❖ Accuracy is a measure of the difference between the actual value 
of a number and its computer representation

❖ Precision is a count of the number of bits in a computer word used to 
represent a value

▪ Capacity for accuracy

❖ High precision permits high accuracy but doesn’t guarantee it

▪ Example: float pi = 3.14; will be represented using all 24 bits of the mantissa 
(highly precise), but is only an approximation (not accurate)

27
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Need Greater Precision?

❖ Double Precision (vs. Single Precision) in 64 bits

▪ C variable declared as double

▪ Exponent bias is now 210–1 = 1023

▪ Advantages: greater precision (larger mantissa), 
   greater range (larger exponent)

▪ Disadvantages: more bits used,
   slower to manipulate

28

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0
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Floating Point Arithmetic (Review)

❖ Basic theoretical idea for floating point operations like + and ×:

1) First, compute the exact result

2) Then encode the result based on the specifics of your representation
• If exponent is outside of range, then you will get over/underflow

• If the exact result is not representable, then it will get rounded to fit the precision (width of M)

29

S E M

Value = (-1)S×Mantissa×2Exponent
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Properties of Floating Point Arithmetic (Review)

❖ Floats with value ±∞ and NaN can be used in operations

▪ Result usually still ±∞ or NaN, but not always intuitive

❖ Floating point operations do not work like real math, due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)

          0                   3.14

▪ Not distributive:     100*(0.1+0.2)  !=  100*0.1+100*0.2

   30.000000000000003553         30

▪ Not cumulative: repeatedly adding a small number to a large one may do nothing

❖ Equality (==) comparisons between floating point numbers are tricky, 
and often return unexpected results, so just avoid them!

30



CSE351IntroductionL06: Floating Point CSE351, Autumn 2025

Floating Point in C

❖ Two common data types: float, double

❖ Floating point literals indicated by decimal point (double by default)

▪ Examples: 1.0 (double), 1.0f (float)

❖ Related libraries:

▪ math.h for INFINITY and NAN constants, float.h for additional constants

❖ Casting between int, float, and double changes the bit 
representation 

▪ Tries to preserve the value, but not always reversible

▪ Integral → floating point: may get rounded if not enough precision

▪ Floating point → integral: fractional part will get lost/truncated

31
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Polling Questions (2/2)

❖ For the following code, what is the smallest value of n that will encounter 
a limit of representation?

 float f = 1.0;  // 2^0
 for (int i = 0; i < n; ++i)
     f *= 1024;  // 1024 = 2^10
 printf("f = %f\n", f);

32
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Lecture Outline (5/5)

❖ Scientific Notation

❖ IEEE 754 Floating Point Encoding

❖ Floating Point Special Cases

❖ Floating Point Limitations and Dangers

❖ Floating Point in Real Life
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Floating Point Issues in Real Life

❖ 1991: Patriot missile targeting error
▪ Time in system stored in integer (tenths of a second since boot)

▪ Converted to seconds by multiplying by 0.1 = 0.0 00112 leading 
to erroneous time (error grows the longer system has been on)

❖ 1996: V88 Ariane 501 rocket exploded 37 seconds after launch
▪ Reused code from Ariane 4 inertial reference platform
▪ Overflow when converting a 64-bit floating point number 

to a 16-bit integer (not protected by extra lines of code)

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 50% error in less than 2 years due to truncation

▪ 1994: Intel Pentium FDIV (floating point division) hardware bug costs company 
$475 million in recall

34
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More on Floating Point History

❖ Early days

▪ First design with floating-point arithmetic in 1914 by Leonardo 
Torres y Quevedo

▪ Implementations started in 1940 by Konrad Zuse, but with differing 
field lengths (usually not summing to 32 bits) and different subsets 
of the special cases

❖ IEEE 754 standard created in 1985

▪ Primary architect was William Kahan, who won a Turing Award for 
this work

▪ Standardized bit encoding, well-defined behavior for all arithmetic 
operations

35

Kahan

Zuse

Quevedo
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Floating Point in the “Wild”

❖ 3 formats from IEEE 754 standard widely used in computer hardware and 
languages

▪ In C, called float, double, long double

❖ Common applications:

▪ 3D graphics: textures, rendering, rotation, translation

▪ “Big Data”: scientific computing at scale, machine learning

❖ Non-standard formats in domain-specific areas:

▪ Bfloat16: training ML models; 
range more valuable than precision

▪ TensorFloat-32: Nvidia-specific 
hardware for Tensor Core GPUs

36

Type S bits E bits M bits Total bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32
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Summary (1/2)

❖ Floating point approximates real numbers (large, small, & special):

▪ Normalized case:  ±1 × Mantissa × 2Exponent = (-1)S × 1.M × 2(E–bias)

▪ Mantissa approximates fractional portion
• Size of mantissa field determines our 

representable precision

• Exceeding mantissa length causes rounding

▪ Exponent in biased notation (bias = 2w-1 – 1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

▪ double (64 bits: [S (1)|E (11)|M (52)]) available if more precision needed

37

S E (8) M (23)
31 30 23 22 0

E M Meaning

0b0…0 anything ± denorm num
(including 0)

anything else anything ± norm num
0b1…1 0 ± ∞
0b1…1 non-zero NaN
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Summary (2/2)

❖ Limitations of FP affect programmers all the time (!)

▪ Overflow, underflow, rounding
• Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of 

the exponent

▪ Floating point arithmetic is NOT associative or distributive
• ∞ and NaN are valid operands, but can produce unintuitive results

▪ Do NOT use equality (==) with floating point numbers

▪ Converting between integral and floating point data types does change the bits
• e.g., int i = 2; // stored as 0x00000002,  

    float f = i; // stored as 0x40000000
38
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