YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

The Hardware/Software Interface

Integers Il

Instructors:

Amber Hu’ JUStin HSia oot 2 1,306... 1,307 32,767...-32,7%8 32,767 ... -32,766
Teaching Assistants: Paf Ol ey SC Bane
Anthony Mangus Divya Ramu ;%»{39\ S %E%ﬁ@% ?/,{;})\
Grace Zhou Jessie Sun LAA A Al A A A~ ?

Jiuyang Lyu Kanishka Singh [;;ﬂ Qﬂ’ @_‘ ﬁq
Kurt Gu Liander Rainbolt AT ——

Mendel Carroll Ming Yan

Naama Amiel Pollux Chen

Rose Maresh Soham Bhosale

Violet Monserate

http://xkcd.com/571/

YA UNIVERSITY of WASHINGTON

LOS: Integers I

CSE351, Autumn 2025

Relevant Course Information

+» HW3 due tonight, HW4 due Monday, HW5 due Wednesday
+» Lab 1a due Monday (10/9)

= Use ptest and dlc.py to check your solution for correctness (on the CSE Linux
environment)

= Submit pointer.cand lablAsynthesis. txt to Gradescope

- Make sure you pass the File and Compilation Check — all the correct files were found and there
were no compilation or runtime errors

+ Lab 1b released today, due 10/16
= Bit manipulation on a custom encoding scheme

= Bonus slides at the end of today’s lecture have relevant examples

+» Reading 6 is dense, do it early if you can!

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Runnable Code Snippets on Ed

+ Ed allows you to embed runnable code snippets (e.g., readings,
homework, discussion)

" These are editable and rerunnable!

" Hides compiler warnings, but will show compiler errors and runtime errors
® Code must be inside of an int main() function
" Touse printf(), you must #include<stdio.h>

+» Suggested use

" Good for experimental questions about basic behaviors in C

= NOT entirely consistent with the CSE Linux environment, so should not be used for
any lab-related work

YA UNIVERSITY of WASHINGTON LOS5: Integers II

Lecture Outline (1/4)

+ Integer Limitations

+ Casting in C

+ Bit Shifting

+ Integer Representation Issues in Real Life

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Integer Limits for w bits (Review)

+» Unsigned range
= UMin = 0b00.0= 0

" UMax = 0Obll..1= 2 -1

+ Signed (Two’s Complement) values
= TMin = 0b10..0 = —-2%-1
= TMax = 0b01..1= 2¥1-1

+» Example: w =8 (e.qg., char)

-00 +00
—128 0 +128 +256
—28-1 0 +25-1 +28

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Integer Arithmetic

+ The same addition procedure works for both unsigned and
sighed (Two’s Complement) integers
= Simplifies hardware: Only one algorithm for addition!
= Algorithm: Normal binary addition, discard the highest carry bit

- Called modular addition: result is sum modulo 2%

+ 4-bit Examples: (HW = hardware, US = unsigned, TC = signed)
HW US TC HW US TC HW US TC

@1@@§ 11@0§ 11@1§
+0O11! +0011! +0100 !

YA UNIVERSITY of WASHINGTON

LOS: Integers I CSE351, Autumn 2025

Arithmetic Overflow

Bits |[Unsigned| Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

+» When a calculation produces a result that
can’t be represented in the current encoding
scheme
" Integer range limited by fixed width
= Can occur in both the positive and negative directions

+» Cand Java ignore overflow exceptions

" You end up with a bad value in your program and no
warning/indication... oops!

YA UNIVERSITY of WASHINGTON

Overflow: Unsigned

+ Addition: drop carry bit (—2%)

13 1101
+ 4 + 0100
T 20001
1
+ Subtraction: borrow (+2%)
1 10001
- 4 — 0100
3 1101

13

LOS: Integers I CSE351, Autumn 2025

1111
1110
1101

0000
0001
0010

12 1100 o1t \ 3
Unsigned
1111011 0100 | 4
1010 0101
10 1001 0110 5

1000 0111

YA UNIVERSITY of WASHINGTON LOS5: Integers II

Overflow: Two’s Complement

+ Addition: (+) + (+) = (=) result?

6 0110
+ 3 + 0011
4 1001
—(
+ Subtraction: (=) + (=) =(+)?
-/ 1001
- 3 - 0011

3G 0110
6

1110
1101

1100

_c\1011 Complement

1010
1001

1111

0000
0001
0010

Two’s 0011

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Arithmetic Overflow Summary

+ Error is always a multiple of £2" because of modular arithmetic

" Unsigned overflow occurs if result falls outside of [UMin, UMax]
- There is a carryout from the MSB

= Signed overflow occurs if result falls outside of [TMin, TMax]
- Signs of both inputs to addition are the same, but the sign of the output is different

+ Independent properties of the arithmetic operation
= All four combinations of signed OF and unsigned OF are possible!

HW us TC

1101: 13, =3| / unsigned overflow
t0100:+ 41+ 41 & signed overflow
=10001:= 1:= 1

10

YA UNIVERSITY of WASHINGTON

LOS: Integers I

Polling Questions (1/2)

CSE351, Autumn 2025

+» What is the value (and encoding) of TMin for a fictional 6-bit wide integer

data type?

+ For the following 8-bit integer additions,
did sighed and/or unsigned overflow occur?
= [TMin, TMax] = [-128, 127]
= [UMin, UMax] = [0, 255]
a) Ox27 + 0x81

b) Ox7F + OxD9

Numeral | Signed |Unsigned
OX27 39 39
OxD9 -39 217
OX7F 127 127
Ox81 -127 129

YA/ UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Lecture Outline (2/4)

« Integer Limitations

+» CastinginC

+ Bit Shifting

+ Integer Representation Issues in Real Life

12

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Data Types

+» How does a data type affect a variable?
= Size of allocation (e.g., char vs. Long)
= How to interpret the bits (e.g., int vs. unsigned)

= Valid operators/operations and their behavior (e.g., can’t use subscript notation []
on integral types, normal vs. pointer arithmetic)

+» What does it mean or what are the consequences of changing your data
type?

13

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Literals

+» Constants/literals in your code also have “types”

= Affect the stored/manipulated data and the behavior of operators
" InC:

- By default, literals (decimal or hex) are treated as signed integers

« Use “U” (or “u”) suffix to explicitly force unsigned (e.g., 100U, 4294967259u)

- Integer literals generally have an assumed size of 4 bytes unless longer is needed
- We will learn about floating point literals next lesson

+ Can be confusing if types don’t match
= Example: signed char c = 255u; printf("%d", c);
= Example: int*x ip = 0x40210 + 1;

14

YA UNIVERSITY of WASHINGTON

LOS: Integers I

CSE351, Autumn 2025

Type Casting: Implicit (Review)

+ Casting converts data of one data type into a different data type

= Different programming languages may not allow casting or only in certain cases

+» Cis known for having very flexible casts, with different effects:
= Changes in bit width (e.g., short to int)

= Changes in interpretations (e.g., int tounsigned -1int, long 1int to charx)
= Full changes in representations (e.g., int to float)

+ An implicit cast is done automatically by the compiler to fix type
mismatches

" Needs to be a well-defined conversion between the two types
= Examples: int int_var =

short_var;, printf("%c", short_var);

15

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Type Casting: Explicit (Review)

+ Casting converts data of one data type into a different data type

= Different programming languages may not allow casting or only in certain cases

+» Cis known for having very flexible casts, with different effects:
= Changes in bit width (e.g., short to int)
= Changes in interpretations (e.g., int tounsigned -1int, long 1int to charx)

® Full changes in representations (e.g., int to float)

+ An explicit cast can be performed by the programmer by using the
syntax: (data_type)expression
= Suppress compiler warnings for implicit casts
" Forcibly cause changes in interpretation or representation

16

YA UNIVERSITY of WASHINGTON

LOS: Integers I

CSE351, Autumn 2025

Casting: Bit Width Change (Mostly Review)

+» Longer to shorter
" e.g., long = int - short — char
= Truncation (i.e., drop upper bytes)

+ Shorter to longer
" e.g., char - short - int — long
= Zero extension: Add all zeros
- In C, done for unsigned data

= Sign extension: Add all {old sign
bit/MSB}

- In C, done for signed data to preserve
value

short s = Ox0351;
char c = s;

unsigned char uc = OxFF;
unsigned short us = uc;

signed char sc = OxFF;
short ss = sc;
sc = 0x10; ss = sc;

17

CSE351, Autumn 2025

YA/ UNIVERSITY of WASHINGTON LOS5: Integers II

Casting: Interpretation Change

+ Casting between signed and unsighed integers
" Bijts are unchanged, just interpreted differently!

" Ordering Inversion (negative — large positive)

UMax
UMax -1

T™ax + 11 ynsigned

T TMax / TMax Range
2’s Complement 0 0/UMin
Range 1 i
-2
TMin

18

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Data Types: Operator Behavior (Review)

>

L)

» Expression Evaluation

" When you mixed unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned

" Including comparison operators <, >, ==, <=, >=

>

D)

» Examples: For 8-bit data, what will the following expressions evaluate to?

m 127 < 128u

= 127 < (signed char) 128u

19

YA/ UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Lecture Outline (3/4)

« Integer Limitations

« Casting in C

+ Bit Shifting

+ Integer Representation Issues in Real Life

20

YA UNIVERSITY of WASHINGTON

LOS: Integers I

Shift Operations (Review, 1/2)

+» Throw away (drop) extra bits that “fall off” the end

+ Left shift (x<<n) bit vector x by n positions
= Fill with @’s on right

+ Right shift (x>>n) bit-vector x by n positions

® Logical shift (for unsigned values)
- Fill with @’s on left

= Arithmetic shift (for signed values)

- Replicate most significant bit on left (maintains sign of x)

21

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Shift Operations (Review, 2/2)

+ Arithmetic:
= | eft shift (x<<n) is equivalent to multiply by 2"
= Right shift (x>>n) is equivalent to divide by 2"
= Shifting is faster than general multiply and divide operations!

«» Notes:
= Shifts by n<0 or n>w (w is bit width of x) are undefined

" In C: behavior of >> is determined by the compiler
- Ingcc/ Clang, depends on data type of x (sighed/unsigned)

" InJava: logical shiftis >>> and arithmetic shift is >>

22

YA UNIVERSITY of WASHINGTON

Left Shifting 8-bit Example

+ No difference in left shift operation for unsigned and signed
numbers (just manipulates bits)
= Difference comes during interpretation: x*x2"?
Signed Unsigned

S A

L1 = x<<2; 0001100100 = 100 100

L2 = x<<3; 00011001000 =__-56 200
signedov@

L3 = x<<4; 000110010000 = -112 144

[unsigned overflow

CSE351, Autumn 2025

23

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2025

Logical Right Shifting 8-bit Example

+» Reminder: C operator >> does logical shift on unsigned values
and arithmetic shift on signed values

" Logical Shift: x/2"?

Xu = 240u; 11110000 = 240
BN

Rlu = xu>>3; 00011110000 = 30

R2u = xu>>5; 0000011110000 = !

| rounding (doﬁ

24

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2025

Arithmetic Right Shifting 8-bit Negative Example

+» Reminder: C operator >> does logical shift on unsigned values
and arithmetic shift on signed values

= Arithmetic Shift: x/2"?

Xs = —-16; 11110000 = -16
NN

Rls = xs>>3; 11111110000 = =2

R2s = xs>>5; 1111111110000 = -1

| rounding (doﬁ

25

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2025

Arithmetic Right Shifting 8-bit Positive Example

+» Reminder: C operator >> does logical shift on unsigned values
and arithmetic shift on signed values

= Arithmetic Shift: x/2"?

Xs = 112; 01110000 = 112
BN

R3s = xs>>3; 00001110000 = 14

R4s = xs>>5; 0000001110000 = 3

| rounding (doﬁ

26

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Polling Questions (2/2)

+» Forunsigned char uc = 0xA1l;, what are the produced data for the
cast (unsigned short)uc?

+» What is the result of the following expressions?

" (signed char)uc >> 2
" (unsigned char)uc >> 3

27

YA/ UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Lecture Outline (4/4)

« Integer Limitations

« Casting in C

% Bit Shifting

+ Integer Representation Issues in Real Life

28

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON LOS5: Integers II

Integer Representation Issues in Real Life

+» 1985: Therac-25 radiation therapy machine

= Qverdoses of radiation due to arithmetic overflow of
incrementing a 1-byte safety flag variable

» 2000: Y2K problem

= limited representation (two-digit decimal year)

+ 2013: Deep Impact spacecraft lost

= Suspected integer overflow from storing time as
tenth-seconds in unsigned int: 8/11/2013, 00:38:49.6

+» 2038: Unix epoch time rollover (seconds since 1/1/1970)
= Signed 32-bit integer representation rolls over to TMin in 2038

Unix Epoch:
00:00:00

january 1, 1970

YA UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

Discussion Question

+ Discuss the following question(s) in groups of 3-4 students
= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+» Given that arithmetic overflow is a well-known property of integers in
computing, what do you think are some of the causes and pressures that
perpetuate these issues?

" Think broadly! Ideas could be technical, economic, societal, etc.

30

YA UNIVERSITY of WASHINGTON LOS5: Integers II

Summary (1/3)

+» We can only represent a limited range of numbers in w bits (2" things)
" Unsigned: [UMin, UMax]

-00 -_— +00
' ' —8 0 +7 +15
= Signed: [TMin, TMax] a1 0 I e
: . . igned|overfl
+ Integer arithmetic is the same in hardware Ansignedjoverrow
regardless of interpretation -2/14 +1/1
= When we exceed the limits, —3/13 +2/2
—4/12 .|.3/3

arithmetic overflow occurs following
the rules of modular arithmetic _sy11\ 1011 4/

- Signed vs. unsigned overflow depends

on interpretation of numbers: +5/5

—6/10

_7/0N_1000 | 0111 A g/6

signed]overflow 31

CSE351, Autumn 2025

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON LOS5: Integers II

Summary (2/3)

+» Data types determine size, interpretations, and operator behaviors
+ Casting (implicit or explicit) can convert values between different data

types
= Be careful of the possible consequences of casting (truncation, zero/sign extension,
change in interpreted value, change in operator behaviors like comparisons and

shifting)
int i = -1;
long c = 1; // changed size (sign extension)
unsigned 1int ui = i; // changed interpretation

// 1 < 1 (True) 1is different than ui < 1 (False)

32

YA UNIVERSITY of WASHINGTON LOS5: Integers II

Summary (3/3)

+ Shifting is a useful bitwise operator

"= Throw away (drop) extra bits that “fall off” the end
= | eft shifting always fills with 0’s

= Right shifting can be arithmetic (fill with copies of sign bit) or logical (fill with 0’s)
= Shifts by n<0 or n=>w (w is bit width) are undefined

+» Common use cases: constant multiplication, bit masking
" x = X << 33 // equivalent to 8*x
= x = (x > 8) < 8; // zeros out lowest byte of x

CSE351, Autumn 2025

33

YA/ UNIVERSITY of WASHINGTON LOS5: Integers II CSE351, Autumn 2025

BONUS SLIDES

Some examples of using shift operators in combination with bitmasks,
which you may find helpful for Lab 1b.

+ Extract the 2"¥ most significant byte of an int
+ Extract the sign bit of a sighed 1int
+ Conditionals as Boolean expressions

34

YA UNIVERSITY of WASHINGTON

LOS: Integers I

Using Shifts and Masks

+ Extract the 2"d most significant byte of an int:
" First shift, then mask: (x>>16) & OxFF

X O0000001|00000010/00000011 OOOOO100
x>>16 00000000 OOOOOOO6 ®®®®®®®l|OOOOOOlO
OxFF 00000000 OOOOOOOO OOOOOOOO 11111111

(x>>16) & OXFF

OOO00O00 OOOOOOOO GOOOOOOO COOOO16

= Or first mask, then shift: (x & OxFFOOO0)>>16

X

00000001 OOOOOO10 OOOOOO11 VOOOO100

OXFF0O000

OO0000000 11111111 OOOOOO00 OOOOOOOO

X & OXFFOO00

01010J0J01010]0]

00000010

OOOOOOO0O OOOOOOO6

(x&OxFF0000)>>16

OOOOOOO0 OOOOOOOO COOOOOOO|000OOO10

CSE351, Autumn 2025

35

YA UNIVERSITY of WASHINGTON

LOS: Integers I

Using Shifts and Masks

+ Extract the sign bit of a signed int:

" First shift, then mask: (x>>31) & 0x1
- Assuming arithmetic shift here, but this works in either case

- Need mask to clear 1s possibly shifted in

X

OPOOOOO1 OOOOOO10

00000011 OOOOO100

—

x>>31

OOOO0O00 OOOOOOO0

E———

00000000 00ONOEO

Ox1

010J0J0]010J010MN0J01010J01010]0

01010101010J010M0J010J0JOI0LOA

(x>>31) & 0Ox1

OOOOOO00 VOO0

OOOO00O00 VOO0

X

1000001 00000010

00000011 OOOOO1006

—

xX>>31

11111111 11111111

E———

11111111 11111111

Ox1

OOO00000 VOO0

01010101010J010MN0J010J0JOI0JOM

(x>>31) & 0x1

0000000 OOOOOOO6

00000000 OOOOOO01

CSE351, Autumn 2025

36

YA UNIVERSITY of WASHINGTON

LOS: Integers I

Using Shifts and Masks

+» Conditionals as Boolean expressions

" Forint Xx, whatdoes (x<

<31)>>31do?

x=11123

00000000 OOOOOOOO OOOOOOOO VOOOOOO1

x<<31

10000000 OOOOOOO0 OOOOOOOO OOOOOOOO

(x<<31)>>31

111131111 111131111 1131111171 11111111

I'x

00000000 OOOOOOOO OOOOOOOO VOOOOOOO

1x<<31

OOOO0O00 OOOOOOOO GOOOOOOO COOOOOO6

(Ix<<31)>>31

OOO00000 OOOOOOOO GOOOOOOO COOOOOO6

= Can use in place of conditional:

- InC: if(x) {a=y;} else
- a=(((!1x<<31)>>31)&y)

{a=z;} equivalentto a=x?y:z;
| (((!x<<31)>>31)&z);

CSE351, Autumn 2025

37

	Slide 1: The Hardware/Software Interface Integers II
	Slide 2: Relevant Course Information
	Slide 3: Runnable Code Snippets on Ed
	Slide 4: Lecture Outline (1/4)
	Slide 5: Integer Limits for bold italic w bits (Review)
	Slide 6: Integer Arithmetic
	Slide 7: Arithmetic Overflow
	Slide 8: Overflow: Unsigned
	Slide 9: Overflow: Two’s Complement
	Slide 10: Arithmetic Overflow Summary
	Slide 11: Polling Questions (1/2)
	Slide 12: Lecture Outline (2/4)
	Slide 13: Data Types
	Slide 14: Literals
	Slide 15: Type Casting: Implicit (Review)
	Slide 16: Type Casting: Explicit (Review)
	Slide 17: Casting: Bit Width Change (Mostly Review)
	Slide 18: Casting: Interpretation Change
	Slide 19: Data Types: Operator Behavior (Review)
	Slide 20: Lecture Outline (3/4)
	Slide 21: Shift Operations (Review, 1/2)
	Slide 22: Shift Operations (Review, 2/2)
	Slide 23: Left Shifting 8-bit Example
	Slide 24: Logical Right Shifting 8-bit Example
	Slide 25: Arithmetic Right Shifting 8-bit Negative Example
	Slide 26: Arithmetic Right Shifting 8-bit Positive Example
	Slide 27: Polling Questions (2/2)
	Slide 28: Lecture Outline (4/4)
	Slide 29: Integer Representation Issues in Real Life
	Slide 30: Discussion Question
	Slide 31: Summary (1/3)
	Slide 32: Summary (2/3)
	Slide 33: Summary (3/3)
	Slide 34
	Slide 35: Using Shifts and Masks
	Slide 36: Using Shifts and Masks
	Slide 37: Using Shifts and Masks

