
CSE351IntroductionL05: Integers II CSE351, Autumn 2025

The Hardware/Software Interface
Integers II

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

http://xkcd.com/571/

http://xkcd.com/571/

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Relevant Course Information

❖ HW3 due tonight, HW4 due Monday, HW5 due Wednesday

❖ Lab 1a due Monday (10/9)

▪ Use ptest and dlc.py to check your solution for correctness (on the CSE Linux
environment)

▪ Submit pointer.c and lab1Asynthesis.txt to Gradescope
• Make sure you pass the File and Compilation Check – all the correct files were found and there

were no compilation or runtime errors

❖ Lab 1b released today, due 10/16

▪ Bit manipulation on a custom encoding scheme

▪ Bonus slides at the end of today’s lecture have relevant examples

❖ Reading 6 is dense, do it early if you can!
2

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Runnable Code Snippets on Ed

❖ Ed allows you to embed runnable code snippets (e.g., readings,
homework, discussion)

▪ These are editable and rerunnable!

▪ Hides compiler warnings, but will show compiler errors and runtime errors

▪ Code must be inside of an int main() function

▪ To use printf(), you must #include<stdio.h>

❖ Suggested use

▪ Good for experimental questions about basic behaviors in C

▪ NOT entirely consistent with the CSE Linux environment, so should not be used for
any lab-related work

3

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Lecture Outline (1/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life

4

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Integer Limits for 𝒘 bits (Review)

❖ Unsigned range

▪ UMin = 0b00…0 = 0

▪ UMax = 0b11…1 = 2𝑤 − 1

❖ Signed (Two’s Complement) values

▪ TMin = 0b10…0 = −2𝑤−1

▪ TMax = 0b01…1 = 2𝑤−1 − 1

❖ Example: 𝑤 = 8 (e.g., char)

5

0
-∞

+256+128−128
+𝟐𝟖+𝟐𝟖−𝟏−𝟐𝟖−𝟏

+∞

𝟎

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Integer Arithmetic

❖ The same addition procedure works for both unsigned and
signed (Two’s Complement) integers

▪ Simplifies hardware: Only one algorithm for addition!

▪ Algorithm: Normal binary addition, discard the highest carry bit
• Called modular addition: result is sum modulo 2𝑤

❖ 4-bit Examples: (HW = hardware, US = unsigned, TC = signed)

6

HW US TC

0100
+0011

4
+3

= 0111 = 7

HW US TC

1100
+0011

4
+3

= 0111 = 7

HW US TC

1101
+0100

4
+3

= 0111 = 7

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Arithmetic Overflow

❖ When a calculation produces a result that
can’t be represented in the current encoding
scheme

▪ Integer range limited by fixed width

▪ Can occur in both the positive and negative directions

❖ C and Java ignore overflow exceptions

▪ You end up with a bad value in your program and no
warning/indication… oops!

7

Bits Unsigned Signed

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Overflow: Unsigned

❖ Addition: drop carry bit (−2w)

❖ Subtraction: borrow (+2w)

8

13
+ 4
17
1

1101
+ 0100
10001

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned

1
- 4
-3
13

10001
- 0100
1101

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Overflow: Two’s Complement

❖ Addition: (+) + (+) = (−) result?

❖ Subtraction: (−) + (−) = (+)?

9

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement

6
+ 3
9
-7

0110
+ 0011
1001

-7
- 3
-10
6

1001
- 0011
0110

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Arithmetic Overflow Summary

❖ Error is always a multiple of ±2𝑤 because of modular arithmetic

▪ Unsigned overflow occurs if result falls outside of [UMin, UMax]
• There is a carryout from the MSB

▪ Signed overflow occurs if result falls outside of [TMin, TMax]
• Signs of both inputs to addition are the same, but the sign of the output is different

❖ Independent properties of the arithmetic operation

▪ All four combinations of signed OF and unsigned OF are possible!

10

HW US TC

1101
+0100

13
+ 4

-3
+ 4

=10001 = 1 = 1

✓ unsigned overflow
 signed overflow

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Polling Questions (1/2)

❖ What is the value (and encoding) of TMin for a fictional 6-bit wide integer
data type?

❖ For the following 8-bit integer additions,
did signed and/or unsigned overflow occur?

▪ [TMin, TMax] = [-128, 127]

▪ [UMin, UMax] = [0, 255]

a) 0x27 + 0x81

b) 0x7F + 0xD9

11

Numeral Signed Unsigned

0x27 39 39

0xD9 -39 217

0x7F 127 127

0x81 -127 129

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Lecture Outline (2/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life

12

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Data Types

❖ How does a data type affect a variable?

▪ Size of allocation (e.g., char vs. long)

▪ How to interpret the bits (e.g., int vs. unsigned)

▪ Valid operators/operations and their behavior (e.g., can’t use subscript notation []
on integral types, normal vs. pointer arithmetic)

❖ What does it mean or what are the consequences of changing your data
type?

13

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Literals

❖ Constants/literals in your code also have “types”

▪ Affect the stored/manipulated data and the behavior of operators

▪ In C:
• By default, literals (decimal or hex) are treated as signed integers

• Use “U” (or “u”) suffix to explicitly force unsigned (e.g., 100U, 4294967259u)

• Integer literals generally have an assumed size of 4 bytes unless longer is needed

• We will learn about floating point literals next lesson

❖ Can be confusing if types don’t match

▪ Example: signed char c = 255u; printf("%d", c);

▪ Example: int* ip = 0x40210 + 1;

14

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Type Casting: Implicit (Review)

❖ Casting converts data of one data type into a different data type

▪ Different programming languages may not allow casting or only in certain cases

❖ C is known for having very flexible casts, with different effects:

▪ Changes in bit width (e.g., short to int)

▪ Changes in interpretations (e.g., int to unsigned int, long int to char*)

▪ Full changes in representations (e.g., int to float)

❖ An implicit cast is done automatically by the compiler to fix type
mismatches

▪ Needs to be a well-defined conversion between the two types

▪ Examples: int int_var = short_var;, printf("%c", short_var);

15

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Type Casting: Explicit (Review)

❖ Casting converts data of one data type into a different data type

▪ Different programming languages may not allow casting or only in certain cases

❖ C is known for having very flexible casts, with different effects:

▪ Changes in bit width (e.g., short to int)

▪ Changes in interpretations (e.g., int to unsigned int, long int to char*)

▪ Full changes in representations (e.g., int to float)

❖ An explicit cast can be performed by the programmer by using the
syntax: (data_type)expression

▪ Suppress compiler warnings for implicit casts

▪ Forcibly cause changes in interpretation or representation

16

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Casting: Bit Width Change (Mostly Review)

❖ Longer to shorter

▪ e.g., long → int → short → char

▪ Truncation (i.e., drop upper bytes)

❖ Shorter to longer

▪ e.g., char → short → int → long

▪ Zero extension: Add all zeros
• In C, done for unsigned data

▪ Sign extension: Add all {old sign
bit/MSB}
• In C, done for signed data to preserve

value

17

short s = 0x0351;

char c = s;

unsigned char uc = 0xFF;

unsigned short us = uc;

signed char sc = 0xFF;

short ss = sc;

sc = 0x10; ss = sc;

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

UMax – 1

0

TMax

TMin

–1

–2

0/UMin

UMax

TMax

TMax + 1

2’s Complement
Range

Unsigned
Range

Casting: Interpretation Change

❖ Casting between signed and unsigned integers

▪ Bits are unchanged, just interpreted differently!

▪ Ordering Inversion (negative → large positive)

18

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Data Types: Operator Behavior (Review)

❖ Expression Evaluation

▪ When you mixed unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned

▪ Including comparison operators <, >, ==, <=, >=

❖ Examples: For 8-bit data, what will the following expressions evaluate to?

▪ 127 < 128u

▪ 127 < (signed char) 128u

19

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Lecture Outline (3/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life

20

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Shift Operations (Review, 1/2)

❖ Throw away (drop) extra bits that “fall off” the end

❖ Left shift (x<<n) bit vector x by n positions

▪ Fill with 0’s on right

❖ Right shift (x>>n) bit-vector x by n positions

▪ Logical shift (for unsigned values)
• Fill with 0’s on left

▪ Arithmetic shift (for signed values)
• Replicate most significant bit on left (maintains sign of x)

21

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Shift Operations (Review, 2/2)

❖ Arithmetic:

▪ Left shift (x<<n) is equivalent to multiply by 2n

▪ Right shift (x>>n) is equivalent to divide by 2n

▪ Shifting is faster than general multiply and divide operations!

❖ Notes:

▪ Shifts by n<0 or n≥w (w is bit width of x) are undefined

▪ In C: behavior of >> is determined by the compiler
• In gcc / C lang, depends on data type of x (signed/unsigned)

▪ In Java: logical shift is >>> and arithmetic shift is >>

22

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Left Shifting 8-bit Example

❖ No difference in left shift operation for unsigned and signed
numbers (just manipulates bits)

▪ Difference comes during interpretation: x*2n?

23

x = 25; 00011001 =

L1 = x<<2; 0001100100 =

L2 = x<<3; 00011001000 =

L3 = x<<4; 000110010000 =

25 25

100 100

-56 200

-112 144

Signed Unsigned

signed overflow

unsigned overflow

signed overflow

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Logical Right Shifting 8-bit Example

❖ Reminder: C operator >> does logical shift on unsigned values
and arithmetic shift on signed values

▪ Logical Shift: x/2n?

24

xu = 240u; 11110000 =

R1u = xu>>3; 00011110000 =

R2u = xu>>5; 0000011110000 =

240

30

7

rounding (down)

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Arithmetic Right Shifting 8-bit Negative Example

❖ Reminder: C operator >> does logical shift on unsigned values
and arithmetic shift on signed values

▪ Arithmetic Shift: x/2n?

25

xs = -16; 11110000 =

R1s = xs>>3; 11111110000 =

R2s = xs>>5; 1111111110000 =

-16

-2

-1

rounding (down)

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Arithmetic Right Shifting 8-bit Positive Example

❖ Reminder: C operator >> does logical shift on unsigned values
and arithmetic shift on signed values

▪ Arithmetic Shift: x/2n?

26

xs = 112; 01110000 =

R3s = xs>>3; 00001110000 =

R4s = xs>>5; 0000001110000 =

112

14

3

rounding (down)

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Polling Questions (2/2)

❖ For unsigned char uc = 0xA1;, what are the produced data for the
cast (unsigned short)uc?

❖ What is the result of the following expressions?

▪ (signed char)uc >> 2

▪ (unsigned char)uc >> 3

27

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Lecture Outline (4/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life

28

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Integer Representation Issues in Real Life

❖ 1985: Therac-25 radiation therapy machine

▪ Overdoses of radiation due to arithmetic overflow of
incrementing a 1-byte safety flag variable

❖ 2000: Y2K problem

▪ Limited representation (two-digit decimal year)

❖ 2013: Deep Impact spacecraft lost

▪ Suspected integer overflow from storing time as
tenth-seconds in unsigned int: 8/11/2013, 00:38:49.6

❖ 2038: Unix epoch time rollover (seconds since 1/1/1970)

▪ Signed 32-bit integer representation rolls over to TMin in 2038

29

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Given that arithmetic overflow is a well-known property of integers in
computing, what do you think are some of the causes and pressures that
perpetuate these issues?

▪ Think broadly! Ideas could be technical, economic, societal, etc.

30

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Summary (1/3)

❖ We can only represent a limited range of numbers in 𝑤 bits (2𝑤 things)

▪ Unsigned: [UMin, UMax]

▪ Signed: [TMin, TMax]

❖ Integer arithmetic is the same in hardware
regardless of interpretation

▪ When we exceed the limits,
arithmetic overflow occurs following
the rules of modular arithmetic
• Signed vs. unsigned overflow depends

on interpretation of numbers:

31

0
-∞

+𝟏𝟓+𝟕−8
+𝟐𝟒 − 𝟏+𝟐𝟒−𝟏 − 𝟏−𝟐𝟒−𝟏

+∞

𝟎

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0/0

+1/1

+2/2

+3/3

+4/4

+5/5

+6/6

+7/7–8/8

–7/9

–6/10

–5/11

–4/12

–3/13

–2/14

–1/15

unsigned overflow

signed overflow

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Summary (2/3)

❖ Data types determine size, interpretations, and operator behaviors

❖ Casting (implicit or explicit) can convert values between different data
types

▪ Be careful of the possible consequences of casting (truncation, zero/sign extension,
change in interpreted value, change in operator behaviors like comparisons and
shifting)

int i = -1;

long c = i; // changed size (sign extension)

unsigned int ui = i; // changed interpretation

// i < 1 (True) is different than ui < 1 (False)

32

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Summary (3/3)

❖ Shifting is a useful bitwise operator

▪ Throw away (drop) extra bits that “fall off” the end

▪ Left shifting always fills with 0’s

▪ Right shifting can be arithmetic (fill with copies of sign bit) or logical (fill with 0’s)

▪ Shifts by n<0 or n≥w (w is bit width) are undefined

❖ Common use cases: constant multiplication, bit masking

▪ x = x << 3; // equivalent to 8*x

▪ x = (x >> 8) << 8; // zeros out lowest byte of x

33

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Some examples of using shift operators in combination with bitmasks,
which you may find helpful for Lab 1b.

❖ Extract the 2nd most significant byte of an int

❖ Extract the sign bit of a signed int

❖ Conditionals as Boolean expressions

34

BONUS SLIDES

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Using Shifts and Masks

❖ Extract the 2nd most significant byte of an int:

▪ First shift, then mask: (x>>16) & 0xFF

▪ Or first mask, then shift: (x & 0xFF0000)>>16

35

0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

x>>16 00000000 00000000 00000001 00000010

x 00000001 00000010 00000011 00000100

x & 0xFF0000 00000000 00000010 00000000 00000000

(x&0xFF0000)>>16 00000000 00000000 00000000 00000010

0xFF0000 00000000 11111111 00000000 00000000

x 00000001 00000010 00000011 00000100

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Using Shifts and Masks

❖ Extract the sign bit of a signed int:

▪ First shift, then mask: (x>>31) & 0x1
• Assuming arithmetic shift here, but this works in either case

• Need mask to clear 1s possibly shifted in

36

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

0

0

1

1

CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Using Shifts and Masks

❖ Conditionals as Boolean expressions

▪ For int x, what does (x<<31)>>31 do?

▪ Can use in place of conditional:
• In C: if(x) {a=y;} else {a=z;} equivalent to a=x?y:z;

• a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

37

x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000

	Slide 1: The Hardware/Software Interface Integers II
	Slide 2: Relevant Course Information
	Slide 3: Runnable Code Snippets on Ed
	Slide 4: Lecture Outline (1/4)
	Slide 5: Integer Limits for bold italic w bits (Review)
	Slide 6: Integer Arithmetic
	Slide 7: Arithmetic Overflow
	Slide 8: Overflow: Unsigned
	Slide 9: Overflow: Two’s Complement
	Slide 10: Arithmetic Overflow Summary
	Slide 11: Polling Questions (1/2)
	Slide 12: Lecture Outline (2/4)
	Slide 13: Data Types
	Slide 14: Literals
	Slide 15: Type Casting: Implicit (Review)
	Slide 16: Type Casting: Explicit (Review)
	Slide 17: Casting: Bit Width Change (Mostly Review)
	Slide 18: Casting: Interpretation Change
	Slide 19: Data Types: Operator Behavior (Review)
	Slide 20: Lecture Outline (3/4)
	Slide 21: Shift Operations (Review, 1/2)
	Slide 22: Shift Operations (Review, 2/2)
	Slide 23: Left Shifting 8-bit Example
	Slide 24: Logical Right Shifting 8-bit Example
	Slide 25: Arithmetic Right Shifting 8-bit Negative Example
	Slide 26: Arithmetic Right Shifting 8-bit Positive Example
	Slide 27: Polling Questions (2/2)
	Slide 28: Lecture Outline (4/4)
	Slide 29: Integer Representation Issues in Real Life
	Slide 30: Discussion Question
	Slide 31: Summary (1/3)
	Slide 32: Summary (2/3)
	Slide 33: Summary (3/3)
	Slide 34
	Slide 35: Using Shifts and Masks
	Slide 36: Using Shifts and Masks
	Slide 37: Using Shifts and Masks

