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Relevant Course Information

❖ HW3 due tonight, HW4 due Monday, HW5 due Wednesday

❖ Lab 1a due Monday (10/9)

▪ Use ptest and dlc.py to check your solution for correctness (on the CSE Linux 
environment)

▪ Submit pointer.c and lab1Asynthesis.txt to Gradescope
• Make sure you pass the File and Compilation Check – all the correct files were found and there 

were no compilation or runtime errors

❖ Lab 1b released today, due 10/16

▪ Bit manipulation on a custom encoding scheme

▪ Bonus slides at the end of today’s lecture have relevant examples

❖ Reading 6 is dense, do it early if you can!
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Runnable Code Snippets on Ed

❖ Ed allows you to embed runnable code snippets (e.g., readings, 
homework, discussion)

▪ These are editable and rerunnable!

▪ Hides compiler warnings, but will show compiler errors and runtime errors

▪ Code must be inside of an int main() function

▪ To use printf(), you must #include<stdio.h>

❖ Suggested use

▪ Good for experimental questions about basic behaviors in C

▪ NOT entirely consistent with the CSE Linux environment, so should not be used for 
any lab-related work
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Lecture Outline (1/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life
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Integer Limits for 𝒘 bits (Review)

❖ Unsigned range

▪ UMin = 0b00…0 = 0

▪ UMax = 0b11…1 = 2𝑤 − 1

❖ Signed (Two’s Complement) values

▪ TMin = 0b10…0 = −2𝑤−1

▪ TMax = 0b01…1 = 2𝑤−1 − 1

❖ Example:  𝑤 = 8 (e.g., char)
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Integer Arithmetic

❖ The same addition procedure works for both unsigned and 
signed (Two’s Complement) integers

▪ Simplifies hardware:  Only one algorithm for addition!

▪ Algorithm:  Normal binary addition, discard the highest carry bit
• Called modular addition:  result is sum modulo 2𝑤

❖ 4-bit Examples: (HW = hardware, US = unsigned, TC = signed)
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HW US TC

0100
+0011

4
+3

= 0111 = 7

HW US TC

1100
+0011

4
+3

= 0111 = 7

HW US TC

1101
+0100

4
+3

= 0111 = 7



CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Arithmetic Overflow

❖ When a calculation produces a result that 
can’t be represented in the current encoding 
scheme

▪ Integer range limited by fixed width

▪ Can occur in both the positive and negative directions

❖ C and Java ignore overflow exceptions

▪ You end up with a bad value in your program and no 
warning/indication… oops!
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Bits Unsigned Signed

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1
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Overflow: Unsigned

❖ Addition:  drop carry bit (−2w)

❖ Subtraction:  borrow (+2w)
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13
+ 4
17
1

1101
+ 0100
10001

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned

1
- 4
-3
13

10001
- 0100
1101
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Overflow: Two’s Complement

❖ Addition:  (+) + (+) = (−) result?

❖ Subtraction:  (−) + (−) = (+)?
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0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s 
Complement

6
+ 3
9
-7

0110
+ 0011
1001

-7
- 3
-10
6

1001
- 0011
0110
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Arithmetic Overflow Summary

❖ Error is always a multiple of ±2𝑤 because of modular arithmetic

▪ Unsigned overflow occurs if result falls outside of [UMin, UMax]
• There is a carryout from the MSB

▪ Signed overflow occurs if result falls outside of [TMin, TMax]
• Signs of both inputs to addition are the same, but the sign of the output is different

❖ Independent properties of the arithmetic operation

▪ All four combinations of signed OF and unsigned OF are possible!
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HW US TC

1101
+0100

13
+ 4

-3
+ 4

=10001 = 1 = 1

✓ unsigned overflow
 signed overflow
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Polling Questions (1/2)

❖ What is the value (and encoding) of TMin for a fictional 6-bit wide integer 
data type?

❖ For the following 8-bit integer additions, 
did signed and/or unsigned overflow occur?

▪ [TMin, TMax] = [-128, 127]

▪ [UMin, UMax] = [0, 255]

a)  0x27 + 0x81

b)  0x7F + 0xD9
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Numeral Signed Unsigned

0x27 39 39

0xD9 -39 217

0x7F 127 127

0x81 -127 129
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Lecture Outline (2/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life
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Data Types

❖ How does a data type affect a variable?

▪ Size of allocation (e.g., char vs. long)

▪ How to interpret the bits (e.g., int vs. unsigned)

▪ Valid operators/operations and their behavior (e.g., can’t use subscript notation [] 
on integral types, normal vs. pointer arithmetic)

❖ What does it mean or what are the consequences of changing your data 
type?
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Literals

❖ Constants/literals in your code also have “types”

▪ Affect the stored/manipulated data and the behavior of operators

▪ In C:
• By default, literals (decimal or hex) are treated as signed integers

• Use “U” (or “u”) suffix to explicitly force unsigned (e.g., 100U, 4294967259u)

• Integer literals generally have an assumed size of 4 bytes unless longer is needed

• We will learn about floating point literals next lesson

❖ Can be confusing if types don’t match

▪ Example:  signed char c = 255u; printf("%d", c);

▪ Example:  int* ip = 0x40210 + 1;
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Type Casting: Implicit (Review)

❖ Casting converts data of one data type into a different data type

▪ Different programming languages may not allow casting or only in certain cases

❖ C is known for having very flexible casts, with different effects:

▪ Changes in bit width (e.g., short to int)

▪ Changes in interpretations (e.g., int to unsigned int, long int to char*)

▪ Full changes in representations (e.g., int to float)

❖ An implicit cast is done automatically by the compiler to fix type 
mismatches 

▪ Needs to be a well-defined conversion between the two types

▪ Examples: int int_var = short_var;, printf("%c", short_var);
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Type Casting: Explicit (Review)

❖ Casting converts data of one data type into a different data type

▪ Different programming languages may not allow casting or only in certain cases

❖ C is known for having very flexible casts, with different effects:

▪ Changes in bit width (e.g., short to int)

▪ Changes in interpretations (e.g., int to unsigned int, long int to char*)

▪ Full changes in representations (e.g., int to float)

❖ An explicit cast can be performed by the programmer by using the 
syntax: (data_type)expression 

▪ Suppress compiler warnings for implicit casts

▪ Forcibly cause changes in interpretation or representation

16
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Casting: Bit Width Change (Mostly Review)

❖ Longer to shorter

▪ e.g., long → int → short → char

▪ Truncation (i.e., drop upper bytes)

❖ Shorter to longer

▪ e.g., char → short → int  → long

▪ Zero extension:  Add all zeros
• In C, done for unsigned data

▪ Sign extension:  Add all {old sign 
bit/MSB}
• In C, done for signed data to preserve 

value

17

short s = 0x0351;

char c = s;

unsigned char uc = 0xFF;

unsigned short us = uc;

signed char sc = 0xFF;

short ss = sc;

sc = 0x10; ss = sc;
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UMax – 1

0

TMax

TMin

–1

–2

0/UMin

UMax

TMax

TMax  + 1

2’s Complement 
Range

Unsigned
Range

Casting: Interpretation Change

❖ Casting between signed and unsigned integers

▪ Bits are unchanged, just interpreted differently! 

▪ Ordering Inversion (negative → large positive)
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Data Types: Operator Behavior (Review)

❖ Expression Evaluation

▪ When you mixed unsigned and signed in a single expression, then 
signed values are implicitly cast to unsigned

▪ Including comparison operators <, >, ==, <=, >=

❖ Examples: For 8-bit data, what will the following expressions evaluate to?

▪ 127 < 128u

▪ 127 < (signed char) 128u

19
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Lecture Outline (3/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life

20
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Shift Operations (Review, 1/2)

❖ Throw away (drop) extra bits that “fall off” the end

❖ Left shift (x<<n) bit vector x by n positions

▪ Fill with 0’s on right

❖ Right shift (x>>n) bit-vector x by n positions

▪ Logical shift (for unsigned values)
• Fill with 0’s on left

▪ Arithmetic shift (for signed values)
• Replicate most significant bit on left (maintains sign of x)

21
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Shift Operations (Review, 2/2)

❖ Arithmetic:

▪ Left shift (x<<n) is equivalent to multiply by 2n

▪ Right shift (x>>n) is equivalent to divide by 2n

▪ Shifting is faster than general multiply and divide operations!

❖ Notes:

▪ Shifts by n<0 or n≥w (w is bit width of x) are undefined

▪ In C:  behavior of >> is determined by the compiler
• In gcc / C lang, depends on data type of x (signed/unsigned)

▪ In Java:  logical shift is >>> and arithmetic shift is >>

22



CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Left Shifting 8-bit Example

❖ No difference in left shift operation for unsigned and signed 
numbers (just manipulates bits)

▪ Difference comes during interpretation:  x*2n?

23

x = 25;       00011001 =

L1 = x<<2;   0001100100 =

L2 = x<<3;  00011001000 =

L3 = x<<4; 000110010000 = 

25   25

100  100

-56  200

-112  144 

Signed    Unsigned

signed overflow

unsigned overflow

signed overflow
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Logical Right Shifting 8-bit Example

❖ Reminder:  C operator >> does logical shift on unsigned values 
and arithmetic shift on signed values

▪ Logical Shift:  x/2n?

24

xu = 240u;  11110000      =

R1u = xu>>3; 00011110000  =

R2u = xu>>5; 0000011110000 =

240

30

7

rounding (down)
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Arithmetic Right Shifting 8-bit Negative Example

❖ Reminder:  C operator >> does logical shift on unsigned values 
and arithmetic shift on signed values

▪ Arithmetic Shift:  x/2n?

25

xs = -16;   11110000      =

R1s = xs>>3; 11111110000  =

R2s = xs>>5; 1111111110000 =

-16

-2

-1

rounding (down)
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Arithmetic Right Shifting 8-bit Positive Example

❖ Reminder:  C operator >> does logical shift on unsigned values 
and arithmetic shift on signed values

▪ Arithmetic Shift:  x/2n?
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xs = 112;   01110000      =

R3s = xs>>3; 00001110000  =

R4s = xs>>5; 0000001110000 =

112

14

3

rounding (down)
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Polling Questions (2/2)

❖ For unsigned char uc = 0xA1;, what are the produced data for the 
cast (unsigned short)uc?

❖ What is the result of the following expressions?

▪ (signed char)uc >> 2

▪ (unsigned char)uc >> 3

27
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Lecture Outline (4/4)

❖ Integer Limitations

❖ Casting in C

❖ Bit Shifting

❖ Integer Representation Issues in Real Life
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Integer Representation Issues in Real Life

❖ 1985: Therac-25 radiation therapy machine

▪ Overdoses of radiation due to arithmetic overflow of 
incrementing a 1-byte safety flag variable

❖ 2000: Y2K problem

▪ Limited representation (two-digit decimal year)

❖ 2013: Deep Impact spacecraft lost

▪ Suspected integer overflow from storing time as 
tenth-seconds in unsigned int: 8/11/2013, 00:38:49.6

❖ 2038: Unix epoch time rollover (seconds since 1/1/1970)

▪ Signed 32-bit integer representation rolls over to TMin in 2038

29
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Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Given that arithmetic overflow is a well-known property of integers in 
computing, what do you think are some of the causes and pressures that 
perpetuate these issues?

▪ Think broadly! Ideas could be technical, economic, societal, etc.

30
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Summary (1/3)

❖ We can only represent a limited range of numbers in 𝑤 bits (2𝑤 things)

▪ Unsigned: [UMin, UMax]

▪ Signed: [TMin, TMax]

❖ Integer arithmetic is the same in hardware 
regardless of interpretation

▪ When we exceed the limits, 
arithmetic overflow occurs following 
the rules of modular arithmetic
• Signed vs. unsigned overflow depends 

on interpretation of numbers:
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0
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+𝟏𝟓+𝟕−8
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𝟎

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001
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0/0

+1/1

+2/2

+3/3

+4/4

+5/5

+6/6

+7/7–8/8

–7/9

–6/10

–5/11

–4/12

–3/13

–2/14

–1/15

unsigned overflow

signed overflow



CSE351IntroductionL05: Integers II CSE351, Autumn 2025

Summary (2/3)

❖ Data types determine size, interpretations, and operator behaviors

❖ Casting (implicit or explicit) can convert values between different data 
types

▪ Be careful of the possible consequences of casting (truncation, zero/sign extension, 
change in interpreted value, change in operator behaviors like comparisons and 
shifting)

int i = -1;

long c = i;           // changed size (sign extension)

unsigned int ui = i;  // changed interpretation

// i < 1 (True) is different than ui < 1 (False)

32
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Summary (3/3)

❖ Shifting is a useful bitwise operator

▪ Throw away (drop) extra bits that “fall off” the end

▪ Left shifting always fills with 0’s

▪ Right shifting can be arithmetic (fill with copies of sign bit) or logical (fill with 0’s)

▪ Shifts by n<0 or n≥w (w is bit width) are undefined

❖ Common use cases: constant multiplication, bit masking

▪ x = x << 3;         // equivalent to 8*x

▪ x = (x >> 8) << 8;  // zeros out lowest byte of x

33
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Some examples of using shift operators in combination with bitmasks, 
which you may find helpful for Lab 1b.

❖ Extract the 2nd most significant byte of an int

❖ Extract the sign bit of a signed int

❖ Conditionals as Boolean expressions

34

BONUS SLIDES
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Using Shifts and Masks

❖ Extract the 2nd most significant byte of an int:

▪ First shift, then mask:  (x>>16) & 0xFF

▪ Or first mask, then shift: (x & 0xFF0000)>>16

35

0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

x>>16 00000000 00000000 00000001 00000010

x 00000001 00000010 00000011 00000100

x & 0xFF0000 00000000 00000010 00000000 00000000

(x&0xFF0000)>>16 00000000 00000000 00000000 00000010

0xFF0000 00000000 11111111 00000000 00000000

x 00000001 00000010 00000011 00000100
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Using Shifts and Masks

❖ Extract the sign bit of a signed int:

▪ First shift, then mask:  (x>>31) & 0x1
• Assuming arithmetic shift here, but this works in either case

• Need mask to clear 1s possibly shifted in

36

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

0

0

1

1
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Using Shifts and Masks

❖ Conditionals as Boolean expressions

▪ For int x, what does (x<<31)>>31 do?

▪ Can use in place of conditional:
• In C:  if(x) {a=y;} else {a=z;} equivalent to a=x?y:z;

• a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

37

x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000
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