YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

The Hardware/Software Interface
Data lll & Integers |

Instructors: FOR ADDED SECURITY, AFTER
| in Hsia. Amber H R ‘:LE ENCRYPT mEH Eﬂ(ﬁ STR{EJT)M,
LATH, DONEHLIN, E SEND IT GH OUR
UStI n Sla’ moer u DD'NEHLJHI ALA IH, NAVATO COPE TALKER.
. . ALAH, DONEHLw:,
Teaching Assistants: IO, DOEHLI, \ iAo WoRDS. FOF
_ A ALAIH RS' AND “ONE"?
Anthony Mangus Divya Ramu DONEHLINL ALATH. ZERO ﬂND
. DG'NEHLW D[}NEHUNI, WHOA, HEY, KEEP
Grace Zhou Jessie Sun DONEHLIN! *rourzthE DOWN!
Jiuyang Lyu Kanishka Singh) .
Kurt Gu Liander Rainbolt :
Mendel Carroll Ming Yan AN\ |
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale http://xked.com/257/

Violet Monserate

http://xkcd.com/257/

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Relevant Course Information

+» HW2 due tonight, HW3 due Friday, HW4 due next Wednesday

+ Lab 1a released
= Some later functions require bit shifting, covered in Reading/Lecture 5

= Workflow:
1) Edit pointer.c
2) Run the Makefile (nake clean followed by make) and check for compiler errors & warnings
3) Run ptest (. /ptest) and check for correct behavior
4) Run rule/syntax checker (. /d1lc. py) and check output

= Due Monday 10/6, will overlap a bit with Lab 1b

- We grade just your /ast submission
- Don’t wait until the last minute to submit — need to check autograder output

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Lab Synthesis Questions

+ All subsequent labs (after Lab 0) have a “synthesis question” portion
" Can be found on the lab specs and are intended to be done after you finish the lab

" You will type up your responses in a . txt file for submission on Gradescope
" These will be graded “by hand” (read by TAs)

+ Intended to check your understanding of what you should have learned
from the lab
= Also, great practice for short answer questions on the exams
= Some are reflective questions — we expect a personal (i.e., not generic) response

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Lecture Outline (1/3)

Data lli:

+ Bitwise and Logical Operators
Numerical Representation:

+» Numerical Encoding Design Example
+» Encoding Integers

YA UNIVERSITY of WASHINGTON

LO4: Data Il & Integers |

Boolean Algebra and Bitwise Operators (Review)

+» Developed by George Boole in 19th Century

= Algebraic representation of logic (True — 1, False — 0)

CSE351, Autumn 2025

+ Bitwise operators apply Boolean operations AND OR
. . Outputs 1 only when | Outputs 1 when either
to b|t vectors Of matChlng |ength both input bits are 1: input bit is 1:
= Apply to any “integral” data type f)‘ | 2 (1) c') | g 1
- char, short, int, long, unsigned 110 1 101 1
= Examples:
01101001 01101001 XOR NOT
& 01010101 | 01010101 Outputs 1 when either | Outputs the opposite
' input is exclusively 1. of its input:
011016001 oll L -
0|0 1 0|1
A 91010101 ~ 01010101 11 o

YA UNIVERSITY of WASHINGTON LO4: Data Ill & Integers |

Logical Operators (Review)

» Logical operators: && (AND), || (OR), ! (NOT)
" |n C: Ois False, anything nonzero is True; always return O or 1

+» Examples (char data type)
= OxCC && 0x33 —-> 0Ox01
" Ox00 || Ox33 -> 0x01
= 1Ox33 -> 0Ox00

= 1Ox00 -> O0Ox01

CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Polling Questions (1/2)

+» Compute the result of the following expressions for char c Ox81;

" ~c & OXxA9
"c || ox80

m llc

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Short-Circuit Evaluation (Review)

+ If the result of a binary logical operator (&&, | |) can be
determined by its first operand, then the second operand is never
evaluated

= Also known as early termination

+» Example: (p && *p) for a pointer p to “protect” the dereference
" Dereferencing NULL (O) results in a segfault

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

Bitmasks

+ Typically binary bitwise operators (&, |, *) are used with one
operand being the “input” and other operand being a specially-chosen
bitmask (or mask) that performs a desired operation

» Operations for a bit b (answer with 0, 1, b, or b):
b&0=___ b&1l=__
b|0=_ b|1=__

b "0=__ b "l=__

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Bitmasks Example

+ Typically binary bitwise operators (&, |, *) are used with one
operand being the “input” and other operand being a specially-chosen
bitmask (or mask) that performs a desired operation

+~ Example: b|0 =b, b|1 =1

01010101 <« input
I 11110000 <« bitmask
11110101

10

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

House of Computing Check-In

+ Topic Group 1: Data /\

" Memory, Data, Integers, Floating Point, Arrays,
Structs

| Even more applications I
I I
I I

) i Applications
+ How do we store information for other

Programming Languages

parts of the house of computing to access? & Libraries

" How do we represent data and what limitations Operating System
exist?

= What design decisions and priorities went into Hardware

these encodings?

Transistors, Gates, Digital Systems

Physics

11

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Lecture Outline (2/3)

Data lll:

+ Bitwise and Logical Operators
Numerical Representation:

< Numerical Encoding Design Example
+» Encoding Integers

12

YA UNIVERSITY of WASHINGTON

LO4: Data Il & Integers |

Numerical Encoding Desigh Example

+ Encode a standard 52-card deck of French-suited (4 suits) playing cards

<44

ek 3

5
L

6
L]

o &

8
L]

>
Ty

<%

L 25|

4

E 3=
< >

$o 0

<)

td

[k 2

v

<

?,0'0

-5

+
4

* o |9 € € € P P X P

+
g

o o o9 ¢

§0‘0

+» Operations to implement:
= Which is the higher value card?
= Are they the same suit?

CSE351, Autumn 2025

o
3o

(=L]

kX1
»
(=%]
0‘0 0’

::‘c? CEP P | Tt

22€CC | €EPP | B XD
4=

QC‘C

(=2 2

O’?CG 446>

*w0
?
=29

>
*=
LR = R 2
* >
L = B 2

o

g
LR 2

[

YA UNIVERSITY of WASHINGTON

LO4: Data Il & Integers |

Representations and Fields

1) Binary encoding of all 52 cards — only 6 bits needed
" 20 =64>052

low-order 6 bits of a byte

" Fits in one byte
" How can we make value and suit comparisons easier?

2) Separate binary encodings of suit (2 bits) and value (4 bits)

= Also fits in one byte, and easy to do comparisons syit ~ Vvelue

00

01

10

11601 ({11060 (1011 0011 | 0010 | 0001

. AR 2R 2L

11

CSE351, Autumn 2025

14

YA UNIVERSITY of WASHINGTON LO4: Data Ill & Integers |

Compare Card Suits

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

card2 = hand[1];

if (same_suit(cardl, card2)) { ... }

#define SUIT_MASK 0x30

int same_suit(char cardl, char card2) {
return (! ((cardl & SUIT_MASK) * (card2 & SUIT_MASK)));
//return (cardl & SUIT_MASK) == (card2 & SUIT_MASK);

}

SUIT_MASK=0x30=1|0/0|1]|1|/0(0|0|0

suit value

CSE351, Autumn 2025

15

YA UNIVERSITY of WASHINGTON

CSE351, Autumn 2025

LO4: Data Il & Integers |

Compare Card Suits Example

}

#define SUIT_MASK 0x30

int same_suit(char cardl, char card2) {
return (! ((cardl & SUIT_MASK) " (card2 & SUIT_MASK)));
//return (cardl & SUIT_MASK) == (card2 & SUIT_MASK);

L 2
* XN
@
3

L 2
~e
]
i
3

0

0

I
[!(x"y) equivalent to x==y i:@ oTo @‘@ oTo

16

YA UNIVERSITY of WASHINGTON LO4: Data Ill & Integers |

Compare Card Values

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

card2 = hand[1];

if (greater_value(cardl, card2)) { ... }

#define VALUE_MASK 0OxOF

int greater_value(char cardl, char card2) {
return ((unsigned int) (cardl & VALUE_MASK) >
(unsigned 1int) (card2 & VALUE_MASK)) ;

VALUE_MASK=0x0F=10|0|0|0|1|1|1]|1

suit value

CSE351, Autumn 2025

17

YA UNIVERSITY of WASHINGTON

LO4: Data Il & Integers |

Compare Card Values Example

#define VALUE_MASK 0OxOF

int greater_value(char cardl, char card2) {
return ((unsigned 1int) (cardl & VALUE_MASK) >
(unsigned 1int) (card2 & VALUE_MASK));

PYNY
L 2
* X
@

3

¢
pi|

Qo
<&
3

i

OOI0|O011(1|1]|1 VALUE_MASK

0 (false)

CSE351, Autumn 2025

18

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Takeaways

+» Custom encodings may need to be created when dealing with
custom data types or if you're trying to be very space efficient

+» There may be many valid encodings but your choices matter
" e.g., space efficiency, ease of implementation
= Can separate encoding into multiple fields

+ Bitwise and logical operators can be useful for manipulating data

19

YA/ UNIVERSITY of WASHINGTON LO4: Data Ill & Integers | CSE351, Autumn 2025

Lecture Outline (3/3)

Data Ill:

% Bitwise and Logical Operators
Numerical Representation:

+» Numerical Encoding Design Example
+» Encoding Integers

20

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Encoding Integers

+» The hardware (and C) supports two flavors of integers
" uynsigned —only the non-negatives
" signed — both negatives and non-negatives

+ Cannot represent all integers with w bits
= Only 2% distinct bit patterns
= Unsigned values: 0..2"-1
" Signed values: —2W~1 .2w-14

+» Example: 8-bit integers (e.g., char)

-00 < +00

—128 0 +128 +256
—28-1 0 +28-1 +2°

21

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

Unsigned Integers (Review)

+ Unsigned values follow the standard base 2 system
u b7b6b5b4b3b2b1b0 — b727 + b626 + .-+ b121 + b020

+ Add and subtract using the normal “carry” and “borrow” rules, just in
binary:

63 00111111, 55 00110111,
+ 8 < +00001000, -_ 8 & -00001000,

+ In C, add “unsigned” keyword in front of any integral type

" e.g.,unsigned char,unsigned short,unsigned 1int,unsigned long

22

YA UNIVERSITY of WASHINGTON LO4: Data Ill & Integers |

Sign and Magnitude

+ Designate the high-order bit (MSB) as the “sign bit”

" 57gn=0: positive number; sign=1: negative number

« Benefits:

= Using MSB as sign bit matches positive numbers with unsigned
= All zeros encoding is still =0

+ Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is 0
= Ox7F=01111111, is non-negative (+127,,)
= 0x85 = 10000101, is negative (-5,,)
= 0x80 = 10000000, is negative... zero???

CSE351, Autumn 2025

|

Not used in practice
for integers!

|

23

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Not used in practice
for integers!

Sign and Magnitude Visualization

+ MSB is the sign bit, rest of the bits are magnitude
«» Drawbacks?

15 0

14

1111
1110
1101

1100

0000
0001
0010

0011

1111
1110
1101

1100

0000
0001
0010

0011

13

12

Sign and
Unsigned £

Magnitude
1111011 0100 | 4 _3\1011 8 0100

1010 0101 1010
1001 0110 1001
1000 0111 1000 0111

24

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Sign and Magnitude Drawbacks (1/2) [N"tf‘;ﬁﬂt‘;‘g‘;ﬂftice]

+ MSB is the sign bit, rest of the bits are magnitude

<« Drawbacks:

= Two representations of O (bad for checking equality)
-7

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
_3 1011 MagnitUde 0100

1010
1001
1000 0111

25

YA UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Autumn 2025

Sign and Magnitude Drawbacks (2/2) [N"tf‘;ﬁﬂt‘;‘g‘;ﬂf“ce]

+ MSB is the sign bit, rest of the bits are magnitude
+ Drawbacks:

= Two representations of 0 (bad for checking equality)

= Arithmetic is cumbersome -7
- Example: 4-3 != 4+(-3)

1111 0000

_s / 1110 0001 \ 4 2
4| 0100 4| 0100 4 1101 0010) | 5
4 X
1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

26

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

Two’s Complement Development (1/2)

+ Let’s fix these problems:
1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate -0

27

YA UNIVERSITY of WASHINGTON LO4: Data Ill & Integers |

Two’s Complement Development (2/2)

>

L)

» Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate -0

4

«» MSB still indicates sign!

" This is why we represent one
more negative than positive
number (-2V~1 to 2N-1 —1)

CSE351, Autumn 2025

28

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

Two’s Complement Negatives (Review)

+» Accomplished with one neat mathematical trick!

b,,_1 has weight —2W~1, other bits have usual weights + 2!

bw-l bw-Z ‘b bO
-1 + 0
= 4-bit Example: 1111 0000
: — 111 1
- 1010, unsigned: 3 on 0 002010 +2
1*23+0*22+1*21+0%2° = 10 _4 +3
1100 ’ 0011
- 1010, two’s complement: Two’s
[1%2340%2241%2140%20 = —6 _g\1011 ~ Complement 4100)

1010
1001
1000 0111

29

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

Two’s Complement is Great (Review)

o

L)

Roughly same number of (+) and (=) numbers

o

L)

Positive number encodings match unsigned

o

Single zero (with all 0’s encoding)

1111
1110
1101

1100

0000
0001

o

L)

Simple negation procedure:

= Get negative representation of any 0010
integer by taking bitwise complement Two’s 0011
and then adding one! _c\1011 Complement g0)
(~x + 1 == -x) 1010 0101

1001 0110

1000 0111

30

YA UNIVERSITY of WASHINGTON LO4: Data Ill & Integers |

Polling Questions (2/2)

+ Take the 4-bit number encoding x = 0b1011

+ Which of the following numbers is NOT a valid interpretation of x using
any of the number representation schemes discussed today?

" Unsigned, Sign and Magnitude, Two’s Complement

m O O W >
=2
=2

We’'re lost...

CSE351, Autumn 2025

31

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2025

Integer Hardware

>

+ In practice, all modern system use unsigned and two’s complement
encoding schemes for integers

= Sign and magnitude for integers is a historical artifact, but useful context for design
decision and for floating point (next unit)

" Much of the same hardware can be used for both encoding schemes (e.g., +, —)

4

+» Fun fact: Java was designed to only support signed data types

= Assumed easier for beginners to understand than having unsigned as well
(i.e., eliminate potential sources of error)

" Unsigned operation support provided with Unsigned Integer API
(starting with Java SE 8 in 2014)

32

YA UNIVERSITY of WASHINGTON

LO4: Data Il & Integers |

Summary (1/2)

+ Bit-level operators allow for fine-grained manipulation

= Bitwise AND (&), OR (|), XOR (*) and NOT (~) operate on the
individual bits of the data

= Especially useful with bitmasks, chosen bit vectors used
with &, |, or A

- b &0 =0, b& 1 = Db (settozeroorkeep as-is)
-b | ©=Db, b | 1 =1 (keepas-isorsetto one)
b MO =Db, b& 1= ~b (keepas-isorflipthe bit)

+ Logical operators work on “truthiness” of data
" O = False, anything else = True

CSE351, Autumn 2025

AND OR
QOutputs 1 only when | Outputs 1 when either
both input bits are 1: input bit is 1:

&|o 1 | o 1
o|j0 O ojo0 1
110 1 111 1

XOR NOT

Outputs 1 when either | Outputs the opposite
input is exclusively 1: of its input:
Ao 1 ~
o|0 1 0|1
1(1 0 1]0

" Logical AND (&&), OR (| |), and NOT (!) — always evaluate to 1 for True

LO4: Data Il & Integers | CSE351, Autumn 2025

YA UNIVERSITY of WASHINGTON

Summary (2/2) R
+ Choice of encoding scheme is important = —
" Tradeoffs based on size requirements and desired operations alue

suit

+ Integers represented using unsigned and two’s complement
representations (sign and magnitude not used in practice)

" Limited by fixed bit width, satisfy desirable arithmetic properties

15

0000
1110 0001

1111

0000
1110 0001
1101 0010 1101 0010

Magnitude Complement
_3\1011 & 0100 /, 4 _5\1011 P 0100 J, 4

1010
1001

1111

14 0000

0001
0010

0011

1111
1110
1101

1100

13

12

Unsigned
11\1011 0100 | 4

1010 0101
1001 0110
1000 0111

1010
1001
1000

0111

	Slide 1: The Hardware/Software Interface Data III & Integers I
	Slide 2: Relevant Course Information
	Slide 3: Lab Synthesis Questions
	Slide 4: Lecture Outline (1/3)
	Slide 5: Boolean Algebra and Bitwise Operators (Review)
	Slide 6: Logical Operators (Review)
	Slide 7: Polling Questions (1/2)
	Slide 8: Short-Circuit Evaluation (Review)
	Slide 9: Bitmasks
	Slide 10: Bitmasks Example
	Slide 11: House of Computing Check-In
	Slide 12: Lecture Outline (2/3)
	Slide 13: Numerical Encoding Design Example
	Slide 14: Representations and Fields
	Slide 15: Compare Card Suits
	Slide 16: Compare Card Suits Example
	Slide 17: Compare Card Values
	Slide 18: Compare Card Values Example
	Slide 19: Takeaways
	Slide 20: Lecture Outline (3/3)
	Slide 21: Encoding Integers
	Slide 22: Unsigned Integers (Review)
	Slide 23: Sign and Magnitude
	Slide 24: Sign and Magnitude Visualization
	Slide 25: Sign and Magnitude Drawbacks (1/2)
	Slide 26: Sign and Magnitude Drawbacks (2/2)
	Slide 27: Two’s Complement Development (1/2)
	Slide 28: Two’s Complement Development (2/2)
	Slide 29: Two’s Complement Negatives (Review)
	Slide 30: Two’s Complement is Great (Review)
	Slide 31: Polling Questions (2/2)
	Slide 32: Integer Hardware
	Slide 33: Summary (1/2)
	Slide 34: Summary (2/2)

