
CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

The Hardware/Software Interface
Memory, Data, & Addressing II
The Hardware/Software Interface
Memory, Data, & Addressing II

Instructors:
Justin Hsia, Amber Hu

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate

http://xkcd.com/138/

http://xkcd.com/138/
http://xkcd.com/138/
http://xkcd.com/138/

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Relevant Course Information

❖ Lab 0 due today @ 11:59 pm

▪ You will revisit the concepts & behavior from this program in future labs!

❖ HW1 due tonight, HW2 due Wednesday, HW3 due Friday @ 11:59 pm

▪ Autograded, unlimited tries, no late submissions

❖ Lab 1a released today, due next Monday (10/6)

▪ Pointers in C

▪ Last submission graded, can optionally work with a partner
• One student submits, then adds their partner to the submission (for every submission)

▪ Short answer “synthesis questions” for after the lab

2

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Late Days

❖ You are given 6 late day tokens for the whole quarter

▪ Tokens can only apply to Labs

▪ No benefit to having leftover tokens

❖ Count lateness in days (even if just by a second)

▪ Special: weekends count as one day

▪ No submissions accepted more than two days late

❖ Late penalty is 10% deduction of your score per day

▪ Only late labs are eligible for penalties

▪ Penalties applied at end of quarter to maximize your grade

❖ Use at own risk – don’t want to fall too far behind

▪ Intended to allow for unexpected circumstances
3

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Lecture Outline (1/4)

❖ Pointers

❖ Pointer Arithmetic

❖ Arrays in C Introduction

❖ C “Strings”

4

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Data Types and Sizes (Revisited)

❖ A pointer is a data type that stores an address

▪ Address size = word size

5

C Data Type
Java

“Equivalent”
Size in bytes

(x86-64)

char byte 1

short short 2

int int 4

long 8

long long long 8

float float 4

double double 8

long double 16

pointer (type*) reference 8

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Addresses and Pointers Example

❖ Address – refers to a location in memory

❖ Pointer – data object that stores/holds an address

❖ In this example, assume a 64-bit machine using big-endian

1) Store 504 = 0x1F8 as 8 bytes at addr 0x08

2) Store pointer pointing to 0x08 at addr 0x38

3) Store pointer pointing to 0x38 at addr 0x48
• Pointer to a pointer!

▪ Was the original data (504) a pointer?
• Could be, depending on how you use it

6

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Pointers in C (Review, 1/3)

❖ Declaration: type* ptr; or type *ptr; (equivalent)

▪ Word size (e.g., 8 bytes on a 64-bit machine) to store addresses

❖ & = “address of” operator

▪ int q;
int* p = &q; // stores address of q in p

❖ * = “value at address” or “dereference” operator

▪ int q = 351;
int* p = &q;
int r = *p; // store the data pointed at by p in r

7

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Pointers in C (Review, 2/3)

❖ Declaration: type* ptr; or type *ptr; (equivalent)

❖ & = “address of” operator

❖ * = “value at address” or “dereference” operator

❖ Operator confusion

▪ The pointer operators are unary (i.e., take 1 operand)

▪ These operators both have binary forms
• x & y is bitwise AND (we’ll talk about this next lecture)

• x * y is multiplication

▪ * is also used as part of the data type in pointer variable declarations – this is NOT
an operator in this context!

8

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Pointers in C (Review, 3/3)

❖ Declaration: type* ptr; or type *ptr; (equivalent)

❖ & = “address of” operator

❖ * = “value at address” or “dereference” operator

❖ NULL is a constant for a pointer to “nothing”

▪ Example: int* p = NULL;

▪ Dereferencing NULL always results in a runtime error

9

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Box-and-Arrow Diagrams

❖ Visual representation of C code with pointers

▪ Boxes are variables, arrows connect pointers to target (NULL shown as Ø)

▪ Useful for planning code and debugging

int x = 3, y;

int* p = &x;

int** pp = &p;

y = **pp + 2;

p = NULL;

y = *p - 2;
10

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Lecture Outline (2/4)

❖ Pointers

❖ Pointer Arithmetic

❖ Arrays in C Introduction

❖ C “Strings”

11

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Pointer Arithmetic (Review)

❖ Pointer arithmetic is arithmetic (e.g., +, –) performed on an
expression that represents an address (e.g., a pointer variable name)

▪ The effect of the arithmetic operator is scaled by the size of the target type
• Can consider this a change in units from bytes to the target type

• Most commonly, adding constants to pointers and subtracting two pointers of the same type

❖ Examples:

▪ For int* p1, p1=p1+1 will increase its value by 4 (incremented by 1 int)

▪ For long* p2, p2=p2+1 will increase its value by 8 (incremented by 1 long)

▪ For int* p3 and int* p4, p4-p3 will return the number of ints between the
two addresses

❖ Not all arithmetic operations are valid on pointers!

12

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

00 27 D0 3C

03 27 D0 3C

Assignment Example (Revisited, 1/3)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, partial state of memory

▪ int x = 0, y = 0x3CD02700;

▪ x = y + 3;

▪ int* z; // at address 0x08

13

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z
DE AD BE EF
FA CE CA FE

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

DE AD BE EF
FA CE CA FE

00 27 D0 3C

03 27 D0 3C

Assignment Example (Revisited, 2/3)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, partial state of memory

▪ int x = 0, y = 0x3CD02700;

▪ x = y + 3;

▪ int* z;

▪ z = &y + 3;
• Get address of y, “add 3”, store in z

14

x

y

00 00 00 00
24 00 00 00

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z

Pointer arithmeticPointer arithmetic

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

00 27 D0 3C

03 27 D0 3C

Assignment Example (Revisited, 3/3)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, partial state of memory

▪ int x = 0, y = 0x3CD02700;

▪ x = y + 3;

▪ int* z;

▪ z = &y + 3;
• Get address of y, add 12, store in z

▪ *z = y;
• Get value of y, put in address stored in z

15

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z00 00 00 00
24 00 00 00

The target of a pointer
is also a location
The target of a pointer
is also a location

00 27 D0 3C

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Pointer Arithmetic Warning

❖ Pointer arithmetic is arithmetic (e.g., +, –) performed on an
expression that represents an address (e.g., a pointer variable name)

▪ The effect of the arithmetic operator is scaled by the size of the target type
• Can consider this a change in units from bytes to the target type

• Most commonly, adding constants to pointers and subtracting two pointers of the same type

❖ Pointer arithmetic can be dangerous and can easily lead to bad
memory accesses if you are not careful!

▪ Be careful with data types and casting
• Example: For int* p, the expression (short*)p + 1 will actually scale by 2 instead of 4

because we are now treating the value in p as if it was a short*

16

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Polling Questions (1/2)

❖ int x = 351;
char* p = &x;
int ar[3];

❖ How much space does the
variable p take up?

A. 1 byte

B. 2 bytes

C. 4 bytes

D. 8 bytes

17

❖ Which of the following
expressions evaluate to an
address?

A. x + 10

B. p + 10

C. &x + 10

D. *(&p)

E. ar[1]

F. &ar[2]

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Aside: Java References

❖ In Java, everything that is not a primitive data type is an object

▪ An object variable is actually a “reference” – a restricted pointer

❖ Reference restrictions:

▪ No pointer arithmetic, just reassignment
• Reassignment must adhere to rules set by typing system (e.g., inheritance)

▪ References can only be “dereferenced” in ways that match class definition
• e.g., calling a method, accessing a field in object

❖ All higher-level languages use pointers/addresses under the hood, but
likely abstracted away from the programmer

18

class Record { ... }
Record x = new Record();

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Lecture Outline (3/4)

❖ Pointers

❖ Pointer Arithmetic

❖ Arrays in C Introduction

❖ C “Strings”

19

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Arrays in C: Declaration (Review)

❖ Arrays are adjacent locations in memory storing the same type
of data object

▪ Declaration: int a[6];

20

element typeelement type

namename
number of
elements

number of
elements 0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

a[1]

a[3]

a[5]
0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Arrays in C: Indexing (Review)

❖ Arrays are adjacent locations in memory storing the same type
of data object

▪ Declaration: int a[6];

▪ Indexing: a[0] = 0x15F;
 a[5] = a[0];

21

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Arrays in C: Lack of Bounds Checking (Review)

❖ Arrays are adjacent locations in memory storing the same type
of data object

▪ Declaration: int a[6];

▪ Indexing: a[0] = 0x15F;
 a[5] = a[0];

▪ No bounds a[6] = 0xBAD;

checking: a[-1] = a[6];

22

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

00000BAD

00000BAD

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Arrays and Pointers in C Example (1/4)

❖ Pointers are very handy when using arrays:

▪ Using the name of an array in an expression evaluates to the array’s address

❖ Examples:
▪ int a[6];

▪ int* p = a; // or &a[0];

▪ *p = 0xA;

23

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000000A

p 00000010 00000000

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Arrays and Pointers in C Example (2/4)

❖ Pointers are very handy when using arrays:

▪ Using the name of an array in an expression evaluates to the array’s address

▪ a[i] is actually *(a + i) and &a[i] is equivalent to a+i

❖ Examples:
▪ int a[6];

▪ int* p = a; // or &a[0];

▪ *p = 0xA;

▪ p[1] = 0xB; // or *(p+1)

24

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000000A

p 00000010 00000000

0000000B

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

00000010

Arrays and Pointers in C Example (3/4)

❖ Pointers are very handy when using arrays:

▪ Using the name of an array in an expression evaluates to the array’s address

▪ a[i] is actually *(a + i) and &a[i] is equivalent to a+i

❖ Examples:
▪ int a[6];

▪ int* p = a; // or &a[0];

▪ *p = 0xA;

▪ p[1] = 0xB; // or *(p+1)

▪ p = p + 2;

25

00000018

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000000A

p 00000000 00000000

0000000B

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

00000018

Arrays and Pointers in C Example (4/4)

❖ Pointers are very handy when using arrays:

▪ Using the name of an array in an expression evaluates to the array’s address

▪ a[i] is actually *(a + i) and &a[i] is equivalent to a+i

❖ Examples:
▪ int a[6];

▪ int* p = a; // or &a[0];

▪ *p = 0xA;

▪ p[1] = 0xB; // or *(p+1)

▪ p = p + 2;

▪ *p = a[1] + 1;

26

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000000A

p 00000000

0000000B
0000000C

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Polling Questions (2/2)

❖ The variable values after Line 3 executes are shown on the right. What
are they after Line 5?

27

0x101 0x5 0x11(A)

0x104 0x5 0x11(B)

0x101 0x6 0x10(C)

0x104 0x6 0x10(D)

p a[0] a[1]

1 void main() {
2 int a[] = {0x5,0x10};
3 int* p = a;
4 p = p + 1;
5 *p = *p + 1;
6 }

0x100a[0]

a[1]

p

5
10

100

...

Address
(hex)

Data
(hex)

p a[0] a[1]

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Lecture Outline (4/4)

❖ Pointers

❖ Pointer Arithmetic

❖ Arrays in C Introduction

❖ C “Strings”

28

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Representing Strings: ASCII

❖ C-style string stored as an array of bytes (char*)

▪ No “String” keyword, unlike Java

▪ Elements are one-byte ASCII codes for each character
• Characters in C indicated with single quotes (e.g., '3') and evaluate to decimal constants

29

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

ASCII: American Standard Code for Information Interchange

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Representing Strings: Null Character (Review)

❖ C-style string stored as an array of bytes (char*)

▪ No “String” keyword, unlike Java

▪ Elements are one-byte ASCII codes for each character
• Characters in C indicated with single quotes (e.g., '3') and evaluate to decimal constants

▪ Last character followed by a 0 byte ('\0', the null character)
• Note that '0' ≠ '\0'

• Example: char str[] = "hi, you"; contains the following values

30

Decimal:.. 104 105 44 32 121 111 117 0

Hex:.. 0x68 0x69 0x2C 0x20 0x79 0x6F 0x75 0x00

Text:.. 'h' 'i' ',' ' ' 'y' 'o' 'u' '\0'

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Representing Strings: Literals (Review)

❖ C-style string stored as an array of bytes (char*)

▪ No “String” keyword, unlike Java

▪ Elements are one-byte ASCII codes for each character
• Characters in C indicated with single quotes (e.g., '3') and evaluate to decimal constants

▪ Last character followed by a 0 byte ('\0', the null character)
• Note that '0' ≠ '\0'

• Example: char str[] = "hi, you"; contains {'h','i',' ','y','o','u','\0’}

❖ A string literal (or string constant) indicated by double quotes
(e.g., "hi, you") and automatically stored as a char array in memory

▪ Space for '\0' included

▪ Cannot be manipulated (need to copy into another char array first)
31

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Printing Strings

❖ To print a string, use printf with the format specifier %s

▪ Argument is the address of the string

▪ Prints out the characters until it finds the first null character

❖ Example:

32

// Curious about these numbers? See asciitable.com.
char str[] = {89, 111, 33, 0, 121, 111, 117};
// notice that it stops at ^
printf("%s\n", str);

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Endianness and Strings

❖ Byte ordering (endianness) is not an issue for 1-byte values

▪ The whole array does not constitute a single value

▪ Individual elements are values; chars are single bytes

❖ Example:
▪ char s[6] = "12345";

33

33
34

31
32

35
00

33
34

31
32

35
00

0x00
0x01
0x02
0x03

0x04
0x05

0x00
0x01
0x02
0x03
0x04
0x05

'1'
'2'
'3'
'4'
'5'
'\0'

little-endian big-endian

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Examining Data Representations: Code

❖ Code to print byte representation of data

▪ Treat any data type as a byte array by casting its address to char*

▪ C has unchecked casts (DANGER)

❖ printf legend:

▪ Special characters: \t = Tab, \n = newline

▪ Format specifiers: %p = pointer,
 %.2hhX = 1 byte (hh) in hex (X), padding to 2 digits (.2)

34

void show_bytes(char* start, int len) {
 int i;
 for (i = 0; i < len; i++)
 printf("%p\t0x%.2hhX\n", start+i, *(start+i));
 printf("\n");
}

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Examining Data Representations: Usage

❖ Code to print byte representation of data

▪ Treat any data type as a byte array by casting its address to char*

▪ C has unchecked casts (DANGER)

35

void show_bytes(char* start, int len) {
 int i;
 for (i = 0; i < len; i++)
 printf("%p\t0x%.2hhX\n", start+i, *(start+i));
 printf("\n");
}

void show_int(int x) {
 show_bytes((char*) &x, sizeof(int));
}

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

show_bytes Execution Example

❖ Result (Linux x86-64):

▪ Note: The addresses will change on each run (try it!), but fall in same general
range

36

int x = 123456; // 0x00 01 E2 40

printf("int x = %d;\n", x);

show_int(x); // show_bytes((char *) &x, sizeof(int));

int x = 123456;

0x7fffb245549c 0x40

0x7fffb245549d 0xE2

0x7fffb245549e 0x01

0x7fffb245549f 0x00

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Summary (1/2)

❖ Pointers are data objects that hold addresses

▪ Type of pointer determines size of thing being pointed at, which could be another
pointer

▪ & = “address of” operator

▪ * = “value at address” or “dereference” operator

▪ NULL is a constant for a pointer to “nothing”

❖ Can visualize using box-and-arrow diagrams:

37

0x7ff…6584 351ptr x

0x7ff…65840x7ff…7bf8

CSE351IntroductionL03: Memory & Data II CSE351, Autumn 2025

Summary (2/2)

❖ Arrays are adjacent locations in memory storing the same type of data

▪ Strings are null-terminated arrays of characters (ASCII)

❖ Pointer arithmetic scales by size of target type

▪ Convenient when accessing array-like structures in memory: a[i] *(a + i)

▪ Be careful when using – particularly when casting variables

38

str 0x33 0x35 0x31 0x00

&str → 0x7ff…7bf8;

	Slide 1: The Hardware/Software Interface Memory, Data, & Addressing II
	Slide 2: Relevant Course Information
	Slide 3: Late Days
	Slide 4: Lecture Outline (1/4)
	Slide 5: Data Types and Sizes (Revisited)
	Slide 6: Addresses and Pointers Example
	Slide 7: Pointers in C (Review, 1/3)
	Slide 8: Pointers in C (Review, 2/3)
	Slide 9: Pointers in C (Review, 3/3)
	Slide 10: Box-and-Arrow Diagrams
	Slide 11: Lecture Outline (2/4)
	Slide 12: Pointer Arithmetic (Review)
	Slide 13: Assignment Example (Revisited, 1/3)
	Slide 14: Assignment Example (Revisited, 2/3)
	Slide 15: Assignment Example (Revisited, 3/3)
	Slide 16: Pointer Arithmetic Warning
	Slide 17: Polling Questions (1/2)
	Slide 18: Aside: Java References
	Slide 19: Lecture Outline (3/4)
	Slide 20: Arrays in C: Declaration (Review)
	Slide 21: Arrays in C: Indexing (Review)
	Slide 22: Arrays in C: Lack of Bounds Checking (Review)
	Slide 23: Arrays and Pointers in C Example (1/4)
	Slide 24: Arrays and Pointers in C Example (2/4)
	Slide 25: Arrays and Pointers in C Example (3/4)
	Slide 26: Arrays and Pointers in C Example (4/4)
	Slide 27: Polling Questions (2/2)
	Slide 28: Lecture Outline (4/4)
	Slide 29: Representing Strings: ASCII
	Slide 30: Representing Strings: Null Character (Review)
	Slide 31: Representing Strings: Literals (Review)
	Slide 32: Printing Strings
	Slide 33: Endianness and Strings
	Slide 34: Examining Data Representations: Code
	Slide 35: Examining Data Representations: Usage
	Slide 36: show_bytes Execution Example
	Slide 37: Summary (1/2)
	Slide 38: Summary (2/2)

