
CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

The Hardware/Software Interface
Memory, Data, & Addressing I

Instructors:
Amber Hu, Justin Hsia

Teaching Assistants:
Anthony Mangus Divya Ramu
Grace Zhou Jessie Sun
Jiuyang Lyu Kanishka Singh
Kurt Gu Liander Rainbolt
Mendel Carroll Ming Yan
Naama Amiel Pollux Chen
Rose Maresh Soham Bhosale
Violet Monserate http://xkcd.com/953/

http://xkcd.com/953/

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Relevant Course Information

❖ Upcoming deadlines

▪ Pre-Course Survey and HW0 due tonight

▪ HW1 due Monday (9/29) night

▪ Lab 0 due Monday (9/29) night
• This lab is exploratory and looks like a HW; the other labs will look a lot different

▪ Reminder: Readings due before every lecture!

❖ Ed Discussion etiquette

▪ For anything that doesn’t involve sensitive information or a solution, post publicly
(you can post anonymously!)

▪ If you feel like you question has been sufficiently answered, make sure that a
response has a checkmark

2

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

EPA

❖ Encourage class-wide learning!

❖ Effort

▪ Attending support hours, completing all assignments

▪ Keeping up with Ed Discussion activity

❖ Participation

▪ Making the class more interactive by asking questions in lecture, section, support
hours, and on Ed Discussion

❖ Altruism

▪ Helping others in section, support hours, and on Ed Discussion

3

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, Arrays,
Structs

❖ How do we store information for other
parts of the house of computing to access?

▪ How do we represent data and what limitations
exist?

▪ What design decisions and priorities went into
these encodings?

House of Computing Check-In

4

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Lecture Outline (1/3)

❖ Memory and Addresses

❖ Data in Memory

❖ Data Basics in Programming

5

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Hardware: Physical View

6

CPU

Input/output
connections

Storage
connections

Memory

Power

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Hardware: Logical View

7

CPU Memory

Disks Net USB Etc.

Interconnection Bus

executes
instruction

stores
local data

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

CPU and Memory

❖ The CPU communicates with memory frequently

▪ Fetches (loads) data upon request from memory

▪ Writes (stores) data to memory

8

CPU Memory
executes

instruction
stores

local data

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Memory Operation Basics

❖ What does data look like?

▪ It turns out that instructions are data, too, and encoded in “machine code”

❖ How do we find or specify data in memory?

▪ Programs have built-in ways to track addresses
9

CPU Memory
executes

instruction
stores

local data

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Addresses (Review)

❖ Conceptually, memory is a single, large array of bytes (i.e., byte-oriented)

❖ Programs refer to bytes in memory by their unique addresses (indices)

▪ We number addresses in increasing order starting from 0

▪ By convention, address size = word size (fixed-length)

▪ Domain of possible addresses = address space

10

0x0…00 0x0…02 0xF…FC 0xF…FE

start of Mem → 20 F6 EF EA ∙∙∙ B5 0D AD B7 ← end of Mem

0x0…01 0x0…03 0xF…FD 0xF…FF

addresses

data (shown in hex)

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Bits and Bytes and Things

❖ 1 byte = 8 bits

❖ 𝑛 bits can represent up to 2𝑛 things

▪ Sometimes (oftentimes?) those “things” are bytes!

❖ If an addresses are 𝑎-bits wide, how many distinct addresses are there?

❖ What does each address refer to?

11

• • •

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Modern System Details

❖ Current x86-64 systems use 64-bit (8-byte) words (“64-bit machines”)

▪ Potential address space: 𝟐𝟔𝟒 addresses
264 bytes  1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

▪ Actual physical address space: 48 bits
• This is sufficient space for now and allows for some operating system tricks

• Example address: 0x 7f fc 3d d5 06 94

❖ There’s a lot more to this story… stay tuned for virtual memory!

12

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Visualizing Memory

❖ We will regularly depict memory as a two-dimensional array

▪ Each cell is a byte

▪ Addresses increase from left-to-right and then top-to-bottom

▪ Row width will most commonly be chosen to the word size (8 bytes here)

13

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

⋮

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Lecture Outline (2/3)

❖ Memory and Addresses

❖ Data in Memory

❖ Data Basics in Programming

14

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Fixed-Length Binary (Review)

❖ Because storage is finite in reality, everything is stored as
“fixed” length

▪ Data is moved and manipulated in fixed-length chunks

▪ Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)

▪ Leading zeros now must be included up to “fill out” the fixed length

❖ Example: The 1-byte representation of 4 is 0b00000100

15

Least Significant Bit (LSB)

Most Significant Bit (MSB)

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Address of Multibyte Data (Review)

❖ Data that span multiple bytes can be thought of as “chunks” of
memory

▪ Example: 351 = 0b1 0101 1111, stored as 0x015F

▪ Each individual byte has a unique address – how should we refer to
the chunk’s address/location?

❖ The address of any chunk of memory is given by the address
of the first byte

▪ To specify a chunk of memory, need both its address and its size

16

Bytes

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C

Addr.
(hex)

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Visualizing Memory (Revisited)

❖ We will regularly depict memory as a two-dimensional array

▪ Addresses increase from left-to-right and then top-to-bottom

▪ Row width will most commonly be chosen to the word size (8 bytes here)

▪ Row address is given by the lowest address in the row

17

0x00
0x08
0x10
0x18
0x20

Row
Address 0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

⋮

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Polling Questions (1/2)

❖ By looking at the bits stored in memory, I can tell what a particular 4
bytes is being used to represent.

A. True B. False

❖ We can fetch a piece of data from memory as long as we have its
address.

A. True B. False

❖ Which of the following bytes have a most-significant bit (MSB) of 1?

A. 0x63 B. 0x90 C. 0xCA D. 0xF

18

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Byte Ordering (Review)

❖ How should bytes within a word be ordered in memory?

▪ Want to keep consecutive bytes in consecutive addresses

▪ By convention, ordering of bytes called endianness – in which address does the
least significant byte go?
• Big-endian means least significant byte has highest address

• Little-endian means least significant byte has lowest address

❖ Example: 4-byte data 0xA1B2C3D4 at address 0x100

19

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

A1 B2 C3 D4

D4 C3 B2 A1

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Polling Questions (2/2)

❖ We store the value 0x 01 02 03 04 as a word
at address 0x100 in a big-endian, 64-bit machine

❖ What is the byte of data stored at address 0x104?

A. 0x04

B. 0x40

C. 0x01

D. 0x10

E. We’re lost…

20

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Endianness Notes

❖ Endianness is a property of the architecture

▪ We are using x86-64, which is little-endian

❖ Endianness only applies to memory storage

❖ Often programmer can ignore endianness because it is handled for you

▪ Bytes wired into correct place when reading or storing from memory (hardware)

▪ Compiler and assembler generate correct behavior (software)

❖ Endianness still shows up:

▪ Logical issues: accessing different amount of data than how you stored it (C/C++)

▪ Need to know exact values to debug memory errors (common)

21

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Lecture Outline (3/3)

❖ Memory and Addresses

❖ Data in Memory

❖ Data Basics in Programming

22

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Data Types and Sizes (Review)

❖ Variables stored in memory treated as “chunks”

▪ C data type sizes vary somewhat by architecture (e.g., IA-32 vs. x86-64)

23

C Data Type
Java

“Equivalent”
Size in bytes

(x86-64)

char byte 1

short short 2

int int 4

long 8

long long long 8

float float 4

double double 8

long double 16

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Variables (Review)

❖ Variables stored in memory treated as “chunks”

▪ A variable name is an alias for a location that contains its
data/value

▪ Declaring a variable allocates space for it (e.g., int x;)

▪ Initializing a variable also assigns an initial value to that
space (e.g., int x = 3;)

❖ Programming language differences

▪ In Java, variable declaration implicitly performs initialization

▪ In C, declaration does not perform initialization
(initially “mystery data”)

24

C Data Type x86-64 Size

char 1B

short 2B

int 4B

long 8B

long long 8B

float 4B

double 8B

long double 16B

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Alignment (Review)

❖ Variables stored in memory treated as “chunks”

▪ A variable name is an alias for a location that contains its
data/value

▪ Declaring a variable allocates space for it (e.g., int x;)

▪ Initializing a variable also assigns an initial value to that
space (e.g., int x = 3;)

❖ Alignment

▪ A variable is considered aligned if its address is a multiple
of its size

▪ Not always required, but common

25

C Data Type x86-64 Size

char 1B

short 2B

int 4B

long 8B

long long 8B

float 4B

double 8B

long double 16B

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Assignment Example (1/4)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, current state of memory

▪ int x, y;
• Assume x is at address 0x04, y is at 0x18

26

0x00 0x01 0x02 0x03

A7 00 32 00
00 01 29 F3
DE AD BE EF
FA CE CA FE
26 00 00 00
00 00 10 00

01 00 00 00
FF 00 F4 96
EE EE EE EE
00 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

x

y

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

00 01 29 F3

Assignment Example (2/4)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, partial state of memory

▪ int x, y;
• Assume x is at address 0x04, y is at 0x18

▪ x = 0;

27

00 00 00 00 x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

01 00 00 00

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

01 00 00 00

00 00 00 00

Assignment Example (3/4)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, partial state of memory

▪ int x, y;
• Assume x is at address 0x04, y is at 0x18

▪ x = 0;

▪ y = 0x3CD02700;

28

x

y00 27 D0 3C

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

00 27 D0 3C

00 00 00 00

Assignment Example (4/4)

❖ Syntax: left-hand side (LHS) = right-hand side (RHS);

❖ Effect: store value of RHS into the location given by LHS

❖ Example: Little-endian, partial state of memory

▪ int x, y;
• Assume x is at address 0x04, y is at 0x18

▪ x = 0;

▪ y = 0x3CD02700;

▪ x = y + 3;
• Get value at y, add 3, store in x

29

x

y

03 27 D0 3C

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Homework Setup (If Time)

❖ Assume that a snippet of memory is shown below (in hex), starting with
the byte at address 0x08 on a little-endian machine:

addr: 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
data: | A2 | D0 | 4F | C4 | A0 | 0C | F7 | 27 |

❖ What is the value of the int stored at address 0x0C?

30

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Summary (1/2)

❖ Memory is a long, byte-addressed array

▪ Word size bounds the size of the address space and memory

▪ Address of a chunk of memory given by the address of the lowest byte in chunk

❖ Endianness determines memory storage order for multi-byte data

▪ Least significant byte in lowest (little-endian) or highest (big-endian) address of
memory chunk

31

0x0…00 0x0…02 0xF…FC 0xF…FE

start of Mem → 20 F6 EF EA ∙∙∙ B5 0D AD B7 ← end of Mem

0x0…01 0x0…03 0xF…FD 0xF…FF

addresses

data (shown in hex)

CSE351IntroductionL02: Memory & Data I CSE351, Autumn 2025

Summary (2/2)

❖ Programming Data

▪ Variable declaration allocates space for data type size

▪ Assignment results in value being put in memory location

32

C Data Type x86-64 Size

char 1B

short 2B

int 4B

long 8B

long long 8B

float 4B

double 8B

long
double

16B

0x00 0x01 0x02 0x03

A7 00 32 00
00 01 29 F3
DE AD BE EF
FA CE CA FE
26 00 00 00
00 00 10 00

01 00 00 00
FF 00 F4 96
EE EE EE EE
00 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

x

y

	Slide 1: The Hardware/Software Interface Memory, Data, & Addressing I
	Slide 2: Relevant Course Information
	Slide 3: EPA
	Slide 4: House of Computing Check-In
	Slide 5: Lecture Outline (1/3)
	Slide 6: Hardware: Physical View
	Slide 7: Hardware: Logical View
	Slide 8: CPU and Memory
	Slide 9: Memory Operation Basics
	Slide 10: Addresses (Review)
	Slide 11: Bits and Bytes and Things
	Slide 12: Modern System Details
	Slide 13: Visualizing Memory
	Slide 14: Lecture Outline (2/3)
	Slide 15: Fixed-Length Binary (Review)
	Slide 16: Address of Multibyte Data (Review)
	Slide 17: Visualizing Memory (Revisited)
	Slide 18: Polling Questions (1/2)
	Slide 19: Byte Ordering (Review)
	Slide 20: Polling Questions (2/2)
	Slide 21: Endianness Notes
	Slide 22: Lecture Outline (3/3)
	Slide 23: Data Types and Sizes (Review)
	Slide 24: Variables (Review)
	Slide 25: Alignment (Review)
	Slide 26: Assignment Example (1/4)
	Slide 27: Assignment Example (2/4)
	Slide 28: Assignment Example (3/4)
	Slide 29: Assignment Example (4/4)
	Slide 30: Homework Setup (If Time)
	Slide 31: Summary (1/2)
	Slide 32: Summary (2/2)

