Virtual Memory I
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

https://ptbd.jwels.berlin/comic/21/
Relevant Course Information

❖ HW21 due tonight, HW22 due Monday, HW23 due Wednesday
❖ Lab 4 due tonight
❖ Lab 5 due next Friday (3/8)
 ▪ The most significant amount of C programming you will do in this class – combines lots of topics from this class: pointers, bit manipulation, structs, examining memory
 ▪ Understanding the concepts first and efficient debugging will save you lots of time
 ▪ Light style grading
 ▪ Only 1 late day can be used for Lab 5

❖ No lessons for Lectures 25 and 26 – “normal” lectures
Take-Home Final Exam

- First three days of Finals Week (3/11-13)
 - Structure will be very similar to the midterm
 - Not cumulative: focused on post-midterm material
 - Hybrid final review session planned for 3/8 (room TBD)
 - Justin will hold virtual support hours on 3/12 and 3/13
 - Regrade requests Monday, 3/18
Virtual Memory I
Lesson Summary (1/2)

❖ **Virtual memory** is software’s perspective (e.g., memory layout), **physical memory** is hardware’s perspective (e.g., memory hierarchy)

❖ Virtual memory manages the memory for multiple concurrently running processes (implements **protection** and **sharing**)
 - Each process has its own virtual address space that gets mapped into parts of the physical address space
 - When run out of physical address space, put least recently used data in disk
Lesson Summary (2/2)

❖ Can think of physical memory as a cache of virtual memory
 - Data is transferred between physical memory and swap space (disk) in **pages**
 - Physical memory has caching parameters and properties
 - Large page size, fully associative, write-back, replacement policy
 - Caveats: virtual pages may not exist, data doesn’t have to exist in both physical memory and disk

![Diagram showing virtual memory and physical memory with swap space](image-url)
Lesson Q&A

❖ Learning Objectives:
 ▪ Explain the benefits behind why virtual memory is used instead of only physical memory address space.
 ▪ Describe the relationships between virtual memory parameters and policies.

❖ What lingering questions do you have from the lesson?
 ▪ Chat with your neighbors about the lesson for a few minutes to come up with questions
Polling Questions (1/2)

❖ On a 64-bit machine currently running 8 processes, how much virtual memory is currently available?

\[
\text{word size is 64 bits, so } n = 64 \text{ and } N = 2^{64} \text{ bytes per process.}
\]

\[
2^{64} \times 8 = 2^{67} \text{ bytes of virtual memory}
\]

❖ True or False: A 32-bit machine with 8 GiB of RAM installed would never use all of it (in theory).

\[
\text{word size is 32 bits, so each process has } 2^{32} \text{ bytes = } 4 \text{ GiB of virtual memory}
\]

however, we have more than 1 process, so we can easily use up all 8 GiB of physical memory

\[\text{Note: there are other limitations, (e.g., motherboard, OS) that restrict the maximum amount of usable RAM in practice.}\]
Polling Questions (2/2)

❖ How many bits wide are the following fields?

- 16 KiB pages: \(p = 14 \text{ bits} \)
- 48-bit virtual addresses: \(n = 48 \text{ bits} \) \(\iff \) 256 TiB virtual memory
- 16 GiB physical memory: \(m = 34 \text{ bits} \)

<table>
<thead>
<tr>
<th>VPN</th>
<th>PPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>34</td>
</tr>
<tr>
<td>(B)</td>
<td>32</td>
</tr>
<tr>
<td>(C)</td>
<td>30</td>
</tr>
<tr>
<td>(D)</td>
<td>34</td>
</tr>
</tbody>
</table>

VA: \(\overline{VPN} \; \; | \; \; Po \) \nVPN = \(n - p = 34 \text{ bits} \) \(\iff \) \(2^4 \) pages in virtual address space

PA: \(\overline{PPN} \; \; | \; \; Po \) \nPPN = \(m - p = 20 \text{ bits} \) \(\iff \) \(2^{20} \) pages in physical address space
Group Work Time

❖ During this time, you are encouraged to work on the following:
 1) If desired, continue your discussion
 2) Work on the homework problems
 3) Work on the lab (if applicable)

❖ Resources:
 ▪ You can revisit the lesson material
 ▪ Work together in groups and help each other out
 ▪ Course staff will circle around to provide support