
CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Memory Allocation III
CSE 351 Winter 2024

Guest Lecturer:
Aman Mohammed

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan Connie Chen
Malak Zaki Jiawei Huang
Naama Amiel Nikolas McNamee
Nathan Khuat Pedro Amarante
Eyoel Gebre Will Robertson

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Relevant Course Information

❖ HW19 due tonight

❖ HW20 due Wednesday (2/28)

❖ HW21 due Friday (3/1)

❖ Lab 4 due Friday (3/1)

❖ Lab 5 due Friday (3/8)

▪ Section this week: lab 5 preparation!

❖ Looking ahead

▪ Final March 11 – 13, more info on this to come

▪ Check your grades in Canvas as we go
2

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

3

Memory Allocation III

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Lesson Summary (1/3)

4

❖ Garbage Collection: automatically freeing space on the heap when no
longer needed

▪ Part of an implicit memory allocator

▪ Free any memory no longer reachable by the program’s local variables

▪ Runs periodically throughout the lifetime of your program

❖ Done in many languages (Java, Python, etc.), but not C!

▪ Why not? – C’s flexibility comes at a cost
• Hard to tell what is a pointer and what isn’t (casting)

• Pointers don’t always point to the beginning of blocks (pointer arithmetic)

▪ Garbage collectors for C exist, but they don’t catch everything
• Not part of the standard library

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Lesson Summary (2/3)

❖ Mark-and-Sweep is a common garbage collection algorithm
• Stores a mark bit for each heap block

1. Start at root nodes (all variables in scope – global variables, stack variables, etc.)

2. Mark all “reachable” heap blocks (from all root nodes)

3. Look through all heap blocks in order, free any unmarked blocks

5

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Lesson Summary (3/3)

6

❖ Common malloc-specific bugs:

▪ Memory leak: allocating space with malloc, but never freeing it

▪ Double-free: freeing the same block twice

▪ Accessing a freed block: using a block after it’s been freed

▪ Wrong allocation size: not allocating enough space for your data

❖ Debug smarter, not harder.

▪ Start from the symptoms and work backwards
• e.g., use backtrace on a segmentation faults

▪ GDB is your friend - helpful for lab 5 and beyond

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Lesson Q&A

❖ Terminology:

▪ Garbage collection: mark-and-sweep

▪ Memory-related issues in C

❖ Learning Objectives:

▪ Explain the tradeoffs between different allocator implementations, policies, and
strategies.

▪ Identify and debug issues such as memory leaks, incorrect pointer use, or buffer
overflow in C programs.

❖ What lingering questions do you have from the lesson?

7

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

8

Memory Allocation III –
Practice

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug! (Slide 9)

9

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error: Program stop? Fix:

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug!

10

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error: no bounds checking Program stop? Sometimes Fix: check bounds with fgets

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug! (Slide 11)

11

int* foo() {

 int val = 0;

 return &val;

}

Error: Program stop? Fix:

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug!

12

int* foo() {

 int val = 0;

 return &val;

}

Error: using nonexistent var Program stop? Sometimes Fix: malloc

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug! (Slide 13)

• N and M defined elsewhere (#define)

13

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

 p[i] = (int*)malloc(M * sizeof(int));

}

Error: Program stop? Fix:

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug!

• N and M defined elsewhere (#define)

14

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

 p[i] = (int*)malloc(M * sizeof(int));

}

Error: wrong allocation size Program stop? Sometimes Fix: malloc

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug! (Slide 15)

15

x = (int*)malloc(N * sizeof(int));

 // manipulate x

free(x);

 ...

y = (int*)malloc(M * sizeof(int));

 // manipulate y

free(x);

Error: Program stop? Fix:

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug!

16

x = (int*)malloc(N * sizeof(int));

 // manipulate x

free(x);

 ...

y = (int*)malloc(M * sizeof(int));

 // manipulate y

free(x);

Error: Double-free Program stop? Sometimes Fix: free(y)

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug! (Slide 17)

17

x = (int*)malloc(N * sizeof(int));

 // manipulate x

free(x);

 ...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

 y[i] = x[i]++;

Error: Program stop? Fix:

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug!

18

x = (int*)malloc(N * sizeof(int));

 // manipulate x

free(x);

 ...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

 y[i] = x[i]++;

Error: Access again after free Program stop? Sometimes Fix: free x after using it

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug! (Slide 19)

19

typedef struct L {

 int val;

 struct L* next;

} list;

void foo() {

 list* head = (list*) malloc(sizeof(list));

 head->val = 0;

 head->next = NULL;

 // create and manipulate the rest of the list

 ...

 free(head);

 return;

}

Error: Program stop? Fix:

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Find That Bug!

20

typedef struct L {

 int val;

 struct L* next;

} list;

void foo() {

 list* head = (list*) malloc(sizeof(list));

 head->val = 0;

 head->next = NULL;

 // create and manipulate the rest of the list

 ...

 free(head);

 return;

}

Error: memory leak Program stop? No Fix: save head-next, then free

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible. Which one?

21

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Memory Leaks with GC

❖ Not because of forgotten free — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

❖ Sometimes nullifying a variable is not needed for correctness but is for performance

❖ Example: Don’t leave big data structures you’re done with in a static field

22

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

23

Memory Allocation III –
Context

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Debugging

“As soon as we started programming, we found to our
 surprise that it wasn't as easy to get programs right as
 we had thought. Debugging had to be discovered. I can
 remember the exact instant when I realized that a large
 part of my life from then on was going to be spent in
 finding mistakes in my own programs.”

– Memoirs of a Computer Pioneer
– by Maurice Wilkes

24

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Quick Debugging Note

❖ Staring at code until you think you spot a bug is generally not an effective
way to debug!

▪ Of course it looks logically correct to you – you wrote it!

▪ Language like C doesn’t abstract away memory – it’s part of your program state
that you need to keep track of
• Your code will only get longer and more complicated in the future: there’s too much to try to

keep track of mentally

❖ Instead, start with bad/unexpected behavior to guide your search

▪ This is why we like code that crashes early

▪ Search bottom-up and not top-down (exhaustive search will take forever)

▪ e.g., use backtrace on seg faults as a first step

25

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Dealing With Memory Bugs

❖ Make use of all of the tools available to you:

▪ Pay attention to compiler warnings and errors

▪ Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

▪ valgrind is a powerful debugging and analysis utility for Linux, especially good for
memory bugs
• Checks each individual memory reference at runtime (i.e., only detects issues with parts of code

used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading uninitialized data, double-frees,
and memory leaks

26

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Debugging Strategies

❖ You’ve got to find what works best for you

❖ Try a lot – your debugging technique should grow over time and some
techniques will work better for different domains

▪ Print debugging

▪ Using a debugger

▪ Visualizations

▪ Generating thorough test cases/suites

▪ Including sensible checks throughout your program

▪ etc.

❖ But this isn’t what we’re here to talk about now…

27

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ CS actively encourages prolonged periods of mental concentration
• Easy to tune everything else out when you remain immobile just a few feet from your screen

(and screens are getting bigger)

• Programmers describe sometimes being “in the zone”

• Long coding sessions and late nights are socially and culturally encouraged

• Hackathons are designed this way and also encourage you to ignore your bodily needs

• Tech companies entice you to stay at work with free food and amenities

28

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Supporting Yourself While Debugging

❖ Mindfulness: “The practice of bringing one’s attention in the present
moment”

▪ Lots of different definitions and nuance, but we’ll stick with this broad definition
and not the wellness craze

❖ While debugging, try to be mindful of your emotional and physical state
as well as your current approach

▪ Are you focused on the task at hand or distracted?

▪ Am I calm and/or rested enough to be thinking “clearly?”

▪ How is my posture, breathing, and tenseness?

▪ Do I have any physical needs that I should address?

▪ What approach am I trying and why? Are there alternatives?
30

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Supporting Yourself While Debugging

❖ Try: set a timer for <your interval of choice>
(e.g., 15 minutes) to evaluate your state and approach

▪ Like the system timer your OS uses for context switching!

❖ If you’re distracted, feeling negative emotions, tense, or need to address
something, take a break!

▪ You will often find that you’ll make a discovery while on a break or at least recover
from setbacks

▪ Breaks also vary wildly by individual and situation

• Make sure that you actually feel rested afterward

• e.g., make tea, work out, do chores, watch a show/movie, play games, chat with friends, make
art

31

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Supporting Yourself

❖ There are few guarantees for support, besides the support that you can
give yourself

▪ Get comfortable in your own skin and stand up for yourself

▪ Can also find support from peers, mentors, family, friends

❖ Your wellbeing is much more important than your assignment grade,
your GPA, your degree, your pride, or whatever else is pushing you to
finish right now

❖ Don’t attach too much of your self-worth to programming and debugging

▪ There’s so much more that makes you a wonderful and worthwhile human being!

32

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Reflect on the last time you were debugging something, whether it was
for this class or another. What was the issue? How did you go about
solving it? Is there something you would try differently?

33

CSE351V00: IntroductionL21: Memory Allocation III CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the current lab

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

34

	Slide 1: Memory Allocation III CSE 351 Winter 2024
	Slide 2: Relevant Course Information
	Slide 3: Memory Allocation III
	Slide 4: Lesson Summary (1/3)
	Slide 5: Lesson Summary (2/3)
	Slide 6: Lesson Summary (3/3)
	Slide 7: Lesson Q&A
	Slide 8: Memory Allocation III – Practice
	Slide 9: Find That Bug! (Slide 9)
	Slide 10: Find That Bug!
	Slide 11: Find That Bug! (Slide 11)
	Slide 12: Find That Bug!
	Slide 13: Find That Bug! (Slide 13)
	Slide 14: Find That Bug!
	Slide 15: Find That Bug! (Slide 15)
	Slide 16: Find That Bug!
	Slide 17: Find That Bug! (Slide 17)
	Slide 18: Find That Bug!
	Slide 19: Find That Bug! (Slide 19)
	Slide 20: Find That Bug!
	Slide 21: What about Java or ML or Python or …?
	Slide 22: Memory Leaks with GC
	Slide 23: Memory Allocation III – Context
	Slide 24: Debugging
	Slide 25: Quick Debugging Note
	Slide 26: Dealing With Memory Bugs
	Slide 27: Debugging Strategies
	Slide 28: Supporting Yourself While Debugging
	Slide 30: Supporting Yourself While Debugging
	Slide 31: Supporting Yourself While Debugging
	Slide 32: Supporting Yourself
	Slide 33: Discussion Question
	Slide 34: Group Work Time

