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Relevant Course Information

+ Lab 1b grades released later this week

= Regrade requests open ~24 hours after grade release (rounded to 12:00 am), close
~72 hours after grade release (rounded to 11:59 pm)

% Lab 2 due Friday (2/2)

= Since you are submitting a text file (defuser. txt), there won’t be any Gradescope
autograder output about compilation this time — check the Code tab after
submission to make sure that everything looks right

= Extra credit (bonus) needs to be submitted to the extra credit assignment

+» Midterm (take home, 2/8-10)

= Make notes and use the midterm reference sheet

" Form study groups and look at past exams!


https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf
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Lesson Summary (1/3)

+ Each stack frame organized in the same way: g
Caller’s :

1) Return address pushed by call ctack < |

- The address of the instruction after call Frame |

2) Callee-saved registers (!

-  Only if procedure modifies/uses them

3) Local variables
- Unavoidable if variable is too big for a register (e.g., array)
- Unavoidable if variable needs an address (i.e., uses &var)

4) Caller-saved registers
«  Onlyif values are needed across a procedure call

5) Argument build

Only if procedure calls a procedure with more than six arguments

(optional) %rbp =

I argument build :

return address

callee-saved
register values

local variables
and padding

caller-saved
register values

argument build

%rsp

>

\
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Lesson Summary (2/3)

+ Important Points (.
) |

" Procedures are a combination of instructions c:::;(s J!
and conventions Frame | |

- Conventions prevent functions from disrupting each other I

I argument build

= Stack is the right data structure

return address

in, fi T tional) %rbp =
- “Last in, first out” matches lifetime of procedures (optional) %rbp

callee-saved
register values

= Recursion handled by normal calling conventions

+ Generally want to minimize the use of the stack

local variables
and padding

= |Lean heavily on registers, which are faster to access

caller-saved
register values

argument build

%rsp >
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Lesson Summary (3/3)

%r ax Return value - Caller saved %r8 Argument #5 - Caller saved
%rbx Callee saved %ro Argument #6 - Caller saved
%rcx Argument #4 - Caller saved %r10 Caller saved
%rdx Argument #3 - Caller saved %ri11 Caller Saved
%rsi Argument #2 - Caller saved %r12 Callee saved
%rdi Argument #1 - Caller saved %ri3 Callee saved
°/or‘sp Stack pointer %ria Callee saved
%rbp Callee saved %r15 Callee saved

CSE351, Winter 2024
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Silly Register Convention Analogy

1) Parents (caller) leave for the weekend and give the keys to the house to
their child (callee)

= Being suspicious, they put away/hid the valuables (caller-saved) before leaving

= Warn child to leave the bedrooms untouched: “These rooms better look the same
when we return!”

2) Child throws a wild party (computation), spanning the entire house

" To avoid being disowned, child moves all of the stuff from the bedrooms to the
backyard shed (callee-saved) before the guests trash the house

" Child cleans up house after the party and moves stuff back to bedrooms

3) Parents return home and are satisfied with the state of the house
= Move valuables back and continue with their lives
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Lesson Q&A

+ Learning Objectives:

" Trace stack frame contents through the execution of x86-64 assembly instructions
for both recursive and non-recursive programs.

= |dentify how x86-64 register-saving conventions allow procedures to execute
without destroying each other’s data.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions
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Polling Questions ¥ [ el

+ In the following function, how big is the stack frame?/gz\(sl
Which instruction(s) pertain to the local variables and saved registers

. . T e
portions of its stack frame?
call mem _add2:
m pushg %rbx Heave o vegister wmlne
@ subq $16, %rsp  + allocdtes space for local wriables
3 movq %rdi, %rbx
141 movq $351, 8(%rsp) #Hindmlizes local wriable valne o7 steck
5 movl $100, %esi K ch&)
U(6) leaq  8(%rsp), %rdi P seb addreo of locl variable "ffﬁi;l)fv:f ‘
7 call mem_add
8 addq %rbx, %rax
1d addq  $16, %rsp 4 deallbates spuce Br local variolles
@( popq %rbx # restove | the /15531'8( vilue
11 ret

10
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Homework Setup

+ Caller-saved register example:

= Saving is done just before
calling the callee and

restoring is done right after
the call

+ Callee-saved register examp

= Saving is done early in
procedure (before use) and

restoring is done just before
returning to caller

L11: Procedures Il

Caller

<use %rax>

CSE351, Winter 2024

pushq %rax #save old val ca"ee
callq > <change %rax value>
<€ retq
popq %rax #restore old value
<use %rax> #same value as before
€. Caller
e Callee
<use %rbx>
callq > pushq %rbx #save old val
<€ <change %rbx value>

<use %rbx> # same value as before

popq %rbx #restore old value
retqg

11
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Procedures Il — Context

12
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Recursive Example: Popcount
/ , of]?Cal r;‘jH J’kn'r‘,'

/* Recursive popcount */
long pcount r(unsigned long x) {
if (X == 0) ¢— sty e all 15 shiffes off
return O;

else value of LSB
return (x&1) + pcount_r(x>>1);

"

% Counts the 1’s in the
binary representation of x

= https://godbolt.org/z/P8Menedl14
= Compiled with -01 instead of -0g

}
—— ST ST
(pcount_> ond rewrse

movl $0, %eax

testq \%rdi, %rdi
jne .L8
ret
.L8:
pushqg |[%rbx
movq %rdi, %rbx
shrq %rdi
call count_r

andl $1, %ebx
addq %rbx, %rax
popq %rbx

ret

for more natural instruction ordering

+» Register usage:
"= Need x (in %rdi) after procedure call

" Chooses to save %rdi by copying into
%rbx

" Chooses to save %rbx by pushing to
stack (only in recursive case)

13


https://godbolt.org/z/P8Mened14
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GDB Demo #2

+» Let’s examine the pcount_r stack frames on a real machine!
= Using pcount.c from the course website

+» You will need to use GDB to get through the Midterm
= Useful debugger in this class and beyond!

« Pay attention to:

" Checking the current stack frames (backtrace)

= Getting stack frame information (info frame <#>)
" Examining memory (x)

14
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Group Work Time

CSE351, Winter 2024

« During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

Resources:
®" You can revisit the lesson material

= Work together in groups and help each other out

" Course staff will circle around to provide support



