
CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Procedures II
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/1270/

http://xkcd.com/1270/

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Relevant Course Information

❖ Lab 1b grades released later this week

▪ Regrade requests open ~24 hours after grade release (rounded to 12:00 am), close
~72 hours after grade release (rounded to 11:59 pm)

❖ Lab 2 due Friday (2/2)

▪ Since you are submitting a text file (defuser.txt), there won’t be any Gradescope
autograder output about compilation this time – check the Code tab after
submission to make sure that everything looks right

▪ Extra credit (bonus) needs to be submitted to the extra credit assignment

❖ Midterm (take home, 2/8–10)

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!
2

https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

3

Procedures II

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Lesson Summary (1/3)

❖ Each stack frame organized in the same way:

1) Return address pushed by call
• The address of the instruction after call

2) Callee-saved registers
• Only if procedure modifies/uses them

3) Local variables
• Unavoidable if variable is too big for a register (e.g., array)

• Unavoidable if variable needs an address (i.e., uses &var)

4) Caller-saved registers
• Only if values are needed across a procedure call

5) Argument build
• Only if procedure calls a procedure with more than six arguments

4

Caller’s
Stack
Frame

(optional) %rbp

%rsp

caller-saved
register values

argument build

callee-saved
register values

local variables
and padding

argument build

return address

⁞

Callee’s
Stack
Frame

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Lesson Summary (2/3)

❖ Important Points

▪ Procedures are a combination of instructions
and conventions
• Conventions prevent functions from disrupting each other

▪ Stack is the right data structure
• “Last in, first out” matches lifetime of procedures

▪ Recursion handled by normal calling conventions

❖ Generally want to minimize the use of the stack

▪ Lean heavily on registers, which are faster to access

5

Caller’s
Stack
Frame

(optional) %rbp

%rsp

caller-saved
register values

argument build

callee-saved
register values

local variables
and padding

argument build

return address

⁞

Callee’s
Stack
Frame

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Lesson Summary (3/3)

6

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15 Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Caller Saved

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp Callee saved

Callee saved

Stack pointer

Return value - Caller saved

Argument #4 - Caller saved

Argument #1 - Caller saved

Argument #3 - Caller saved

Argument #2 - Caller saved

Argument #6 - Caller saved

Argument #5 - Caller saved

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Silly Register Convention Analogy

1) Parents (caller) leave for the weekend and give the keys to the house to
their child (callee)

▪ Being suspicious, they put away/hid the valuables (caller-saved) before leaving

▪ Warn child to leave the bedrooms untouched: “These rooms better look the same
when we return!”

2) Child throws a wild party (computation), spanning the entire house

▪ To avoid being disowned, child moves all of the stuff from the bedrooms to the
backyard shed (callee-saved) before the guests trash the house

▪ Child cleans up house after the party and moves stuff back to bedrooms

3) Parents return home and are satisfied with the state of the house

▪ Move valuables back and continue with their lives
7

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Trace stack frame contents through the execution of x86-64 assembly instructions
for both recursive and non-recursive programs.

▪ Identify how x86-64 register-saving conventions allow procedures to execute
without destroying each other’s data.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with
questions

8

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

9

Procedures II – Practice

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Polling Questions

❖ In the following function, how big is the stack frame?
Which instruction(s) pertain to the local variables and saved registers
portions of its stack frame?

10

call_mem_add2:
1 pushq %rbx
2 subq $16, %rsp
3 movq %rdi, %rbx
4 movq $351, 8(%rsp)
5 movl $100, %esi
6 leaq 8(%rsp), %rdi
7 call mem_add
8 addq %rbx, %rax
9 addq $16, %rsp
10 popq %rbx
11 ret

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Homework Setup

❖ Caller-saved register example:

▪ Saving is done just before
calling the callee and
restoring is done right after
the call

❖ Callee-saved register example:

▪ Saving is done early in
procedure (before use) and
restoring is done just before
returning to caller

11

Caller
...

<use %rbx>
callq

<use %rbx> # same value as before
...

Callee
pushq %rbx # save old val
<change %rbx value>
popq %rbx # restore old value
retq

Caller
...

<use %rax>
pushq %rax # save old val
callq

popq %rax # restore old value
<use %rax> # same value as before
...

Callee
<change %rax value>
retq

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

12

Procedures II – Context

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

Recursive Example: Popcount

13

❖ Counts the 1’s in the
binary representation of x

▪ https://godbolt.org/z/P8Mened14

▪ Compiled with -O1 instead of -Og
for more natural instruction ordering

❖ Register usage:

▪ Need x (in %rdi) after procedure call

▪ Chooses to save %rdi by copying into
%rbx

▪ Chooses to save %rbx by pushing to
stack (only in recursive case)

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

https://godbolt.org/z/P8Mened14

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

GDB Demo #2

❖ Let’s examine the pcount_r stack frames on a real machine!

▪ Using pcount.c from the course website

❖ You will need to use GDB to get through the Midterm

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Checking the current stack frames (backtrace)

▪ Getting stack frame information (info frame <#>)

▪ Examining memory (x)

14

CSE351V00: IntroductionL11: Procedures II CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the lab (if applicable)

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

15

