W UNIVERSITY of WASHINGTON

L11: Procedures Il

Procedures I
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen

Eyoel Gebre
Jiawei Huang
Malak Zaki

Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 15
ITS OWN REWARD.

/

http://xkcd.com/1270/

CSE351, Winter 2024

http://xkcd.com/1270/

W UNIVERSITY of WASHINGTON L11: Procedures Il CSE351, Winter 2024

Relevant Course Information

+ Lab 1b grades released later this week

= Regrade requests open ~24 hours after grade release (rounded to 12:00 am), close
~72 hours after grade release (rounded to 11:59 pm)

% Lab 2 due Friday (2/2)

= Since you are submitting a text file (defuser. txt), there won’t be any Gradescope
autograder output about compilation this time — check the Code tab after
submission to make sure that everything looks right

= Extra credit (bonus) needs to be submitted to the extra credit assignment

+» Midterm (take home, 2/8-10)

= Make notes and use the midterm reference sheet

" Form study groups and look at past exams!

https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf

W UNIVERSITY of WASHINGTON L11: Procedures Il CSE351, Winter 2024

Procedures Il

W UNIVERSITY of WASHINGTON L11: Procedures Il

Lesson Summary (1/3)

+ Each stack frame organized in the same way: g
Caller’s :

1) Return address pushed by call ctack < |

- The address of the instruction after call Frame |

2) Callee-saved registers (!

- Only if procedure modifies/uses them

3) Local variables
- Unavoidable if variable is too big for a register (e.g., array)
- Unavoidable if variable needs an address (i.e., uses &var)

4) Caller-saved registers
« Onlyif values are needed across a procedure call

5) Argument build

Only if procedure calls a procedure with more than six arguments

(optional) %rbp =

I argument build :

return address

callee-saved
register values

local variables
and padding

caller-saved
register values

argument build

%rsp

>

\

CSE351, Winter 2024

Callee’s

> Stack

Frame

W UNIVERSITY of WASHINGTON L11: Procedures Il

Lesson Summary (2/3)

+ Important Points (.
) |

" Procedures are a combination of instructions c:::;(s J!
and conventions Frame | |

- Conventions prevent functions from disrupting each other I

I argument build

= Stack is the right data structure

return address

in, fi T tional) %rbp =
- “Last in, first out” matches lifetime of procedures (optional) %rbp

callee-saved
register values

= Recursion handled by normal calling conventions

+ Generally want to minimize the use of the stack

local variables
and padding

= |Lean heavily on registers, which are faster to access

caller-saved
register values

argument build

%rsp >

CSE351, Winter 2024

Callee’s
Stack
Frame

W UNIVERSITY of WASHINGTON

L11: Procedures Il

Lesson Summary (3/3)

%r ax Return value - Caller saved %r8 Argument #5 - Caller saved
%rbx Callee saved %ro Argument #6 - Caller saved
%rcx Argument #4 - Caller saved %r10 Caller saved
%rdx Argument #3 - Caller saved %ri11 Caller Saved
%rsi Argument #2 - Caller saved %r12 Callee saved
%rdi Argument #1 - Caller saved %ri3 Callee saved
°/or‘sp Stack pointer %ria Callee saved
%rbp Callee saved %r15 Callee saved

CSE351, Winter 2024

W UNIVERSITY of WASHINGTON CSE351, Winter 2024

Silly Register Convention Analogy

1) Parents (caller) leave for the weekend and give the keys to the house to
their child (callee)

= Being suspicious, they put away/hid the valuables (caller-saved) before leaving

= Warn child to leave the bedrooms untouched: “These rooms better look the same
when we return!”

2) Child throws a wild party (computation), spanning the entire house

" To avoid being disowned, child moves all of the stuff from the bedrooms to the
backyard shed (callee-saved) before the guests trash the house

" Child cleans up house after the party and moves stuff back to bedrooms

3) Parents return home and are satisfied with the state of the house
= Move valuables back and continue with their lives

W UNIVERSITY of WASHINGTON L11: Procedures Il CSE351, Winter 2024

Lesson Q&A

+ Learning Objectives:

" Trace stack frame contents through the execution of x86-64 assembly instructions
for both recursive and non-recursive programs.

= |dentify how x86-64 register-saving conventions allow procedures to execute
without destroying each other’s data.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions

W UNIVERSITY of WASHINGTON L11: Procedures Il CSE351, Winter 2024

Procedures Il — Practice

W UNIVERSITY of WASHINGTON L11: Procedures Il CSE351, Winter 2024

Polling Questions ¥ [el

+ In the following function, how big is the stack frame?/gz\(sl
Which instruction(s) pertain to the local variables and saved registers

. . T e
portions of its stack frame?
call mem _add2:
m pushg %rbx Heave o vegister wmlne
@ subq $16, %rsp + allocdtes space for local wriables
3 movq %rdi, %rbx
141 movq $351, 8(%rsp) #Hindmlizes local wriable valne o7 steck
5 movl $100, %esi K ch&)
U(6) leaq 8(%rsp), %rdi P seb addreo of locl variable "ffﬁi;l)fv:f ‘
7 call mem_add
8 addq %rbx, %rax
1d addq $16, %rsp 4 deallbates spuce Br local variolles
@(popq %rbx # restove | the /15531'8(vilue
11 ret

10

W UNIVERSITY of WASHINGTON

Homework Setup

+ Caller-saved register example:

= Saving is done just before
calling the callee and

restoring is done right after
the call

+ Callee-saved register examp

= Saving is done early in
procedure (before use) and

restoring is done just before
returning to caller

L11: Procedures Il

Caller

<use %rax>

CSE351, Winter 2024

pushq %rax #save old val ca"ee
callq > <change %rax value>
<€ retq
popq %rax #restore old value
<use %rax> #same value as before
€. Caller
e Callee
<use %rbx>
callq > pushq %rbx #save old val
<€ <change %rbx value>

<use %rbx> # same value as before

popq %rbx #restore old value
retqg

11

W UNIVERSITY of WASHINGTON L11: Procedures Il CSE351, Winter 2024

Procedures Il — Context

12

W UNIVERSITY of WASHINGTON

L11: Procedures Il CSE351, Winter 2024

Recursive Example: Popcount
/ , of]?Cal r;‘jH J’kn'r‘,'

/* Recursive popcount */
long pcount r(unsigned long x) {
if (X == 0) ¢— sty e all 15 shiffes off
return O;

else value of LSB
return (x&1) + pcount_r(x>>1);

"

% Counts the 1’s in the
binary representation of x

= https://godbolt.org/z/P8Menedl14
= Compiled with -01 instead of -0g

}
—— ST ST
(pcount_> ond rewrse

movl $0, %eax

testq \%rdi, %rdi
jne .L8
ret
.L8:
pushqg |[%rbx
movq %rdi, %rbx
shrq %rdi
call count_r

andl $1, %ebx
addq %rbx, %rax
popq %rbx

ret

for more natural instruction ordering

+» Register usage:
"= Need x (in %rdi) after procedure call

" Chooses to save %rdi by copying into
%rbx

" Chooses to save %rbx by pushing to
stack (only in recursive case)

13

https://godbolt.org/z/P8Mened14

W UNIVERSITY of WASHINGTON

L11: Procedures Il

CSE351, Winter 2024

GDB Demo #2

+» Let’s examine the pcount_r stack frames on a real machine!
= Using pcount.c from the course website

+» You will need to use GDB to get through the Midterm
= Useful debugger in this class and beyond!

« Pay attention to:

" Checking the current stack frames (backtrace)

= Getting stack frame information (info frame <#>)
" Examining memory (x)

14

W UNIVERSITY of WASHINGTON L11: Procedures Il

Group Work Time

CSE351, Winter 2024

« During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

Resources:
®" You can revisit the lesson material

= Work together in groups and help each other out

" Course staff will circle around to provide support

