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You Retweeted

Senior Oops Engineer @ReinH - Feb 28, 2019
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| am a full stack engineer which means if you give me one more task my

stack will overflow
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Relevant Course Information

+ Lab 2 due next Friday (2/2)

= Can start in earnest after today’s lecture!
= See GDB Tutorial Lesson and and Phase 1 walkthrough in Section 4 Lesson

+» Midterm (take home, 2/8-2/10)

= Make notes and use the midterm reference sheet

"= Form study groups and look at past exams!

CSE351, Winter 2024


https://courses.cs.washington.edu/courses/cse351/24wi/exams/ref-mt.pdf
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Lesson Summary (1/3)

+» Memory is organized into
5 segments based on data
declaration and lifetime

" Goals: maximize use of space,
manage data differently, apply
separate permissions

+» A segmentation fault is caused
by an impermissible memory
access
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Lesson Summary (2/3)

Stack “Bottom”

+ The Stack is the memory segment with the Higher
highest addresses and grows downward Addresses

= Stack “top” (lowest address) is defined
by the value of the stack pointer (%rsp) Lower

= Can manipulate using add, sub, push, and pop Addresses

+ Procedure calling conventions for passing control and data
= call and ret pass control using %r-ip and a return address on the stack
" Arguments: %rd-i, %rsi, %rdx, %rcx, %r8, %r9, Stack
= Return value: %rax

Stack “Top”
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Lesson Summary (3/3)

+ Stack organized into stack frames
that hold a procedure instance’s data
= Size will vary based on procedure specifics

= Space gets allocated as procedure executes,
deallocated by the time it returns
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Lesson Q&A

+ Learning Objectives:

= Determine the location/segment in memory that a piece of data will be stored
based on the nature of that data (i.e., static, literals, etc.).

" Trace stack frame movement and creation.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions
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Practice Questions (1/2)

+» How does the stack change after executing the following instructions?

ﬁu /\pushq srbp 1 hiper
I " resses
o /subq $Ox18, %rsp # gvo> B B skr/nrak/ Stack
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+ For the following function, which registers do we know must be used?

void* memset(void*x ptr, int value, size_t num);

return walue \'V\(_zm\x-) argumen‘U m (7 7ordt J besi _ and % rA{

'%FSEI changeA ‘37 call é ret
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Practice Questions (2/2)

+» Answer the following questions about when main () is run (assume x
and y stored on the Stack):

int@() { int randSum(int n) {
int i, x = 0; int y :()%20;
for('i:O;'i<%°i-i++) return n+y;
= (randSum(x) ; }
"x = %d\n",x);
return 0;
} VPN .
| T | )
= Higher/larger address: @or y? ﬂ(lvwsum( ( o ) - le\ o (f)
" How many total stack frames [ rend, |5 [, [) | e l‘>
are created? %

= What is the maximum depth
(# of frames) of the Stack? A. B.2|C. 3D. 4
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Simplified Memory Layout

High Address Space: What Goes Here:
Addresses A OXF..F

Stack Local variables and procedure context

Dynamic Data Variables allocated with new or malloc

Memory (Heap)
Addresses
Static Data Static variables (including global variables)
Literals Immutable literals/constants (e.g., "example")
Instructions Program code
tow — ]10x0...0

Addresses

12
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. This is ext
X86-64 Linux Memory Layout (non-testable)
OxOOO07FFFFFFFFFFF material
Stack
+ Stack 1
= Runtime stack has 8 MiB limit
« Heap Heap
= Dynamically allocated as needed
v

" malloc(), calloc(), new, ...

Statically allocated data (Data) Shared

_ _ Libraries
= Read-only: string literals
= Read/write: global arrays and variables

L)

0’0

. : 4
+» Code / Shared Libraries ;
eap
= Executable machine instructions =
ata
= Read-only Instructions

Hex Address Ox400000
OX000000 13
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Stack Overflow

+» When the stack pointer exceeds the stack bounds (segmentation fault)

" |n theory: when it collides with the Heap
" |n x86-64 Linux, when it exceeds 8 MiB limit

+» Causes?
" |nfinite/deep recursion
= Very large local variables

+ Fixes?
= Use iterative solution, compiler tail-call optimization

= Allocate large variables elsewhere (more on the Heap later this quarter)

14
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Aside: Stack Overflow

+» Has nothing to do with actual stack overflow — named based on poll of
blog users; some of the non-winning options:
= algorithmical
= bitoriented
= dereferenced
= fellowhackers
= humbleprogrammers
= privatevoid
= shiftleftl
= understandrecursion

+ Crowd-sourced their logo for $512

15
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Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

<+ Naming/etymology plays a big role in learning

= Which new terms in this class have been the most intuitive for you to learn vs. the
most difficult?

= What do you think goes into a good vs. bad name more generally in computer
science?

16
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Group Work Time

+ During this time, you are encouraged to work on the following:
1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

<« Resources:

® You can revisit the lesson material
= Work together in groups and help each other out

= Course staff will circle around to provide support
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