YA/ UNIVERSITY of WASHINGTON

Procedures |
CSE 351 Winter 2024

Guest Instructor:
Will Robertson

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen

Eyoel Gebre
Jiawei Huang
Malak Zaki

Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

0

L10: Procedures |

You Retweeted

Senior Oops Engineer @ReinH - Feb 28, 2019

CSE351, Winter 2024

| am a full stack engineer which means if you give me one more task my

stack will overflow

.‘T‘<

YA/ UNIVERSITY of WASHINGTON L10: Procedures |

Relevant Course Information

+ Lab 2 due next Friday (2/2)

= Can start in earnest after today’s lecture!
= See GDB Tutorial Lesson and and Phase 1 walkthrough in Section 4 Lesson

+» Midterm (take home, 2/8-2/10)

= Make notes and use the midterm reference sheet

"= Form study groups and look at past exams!

CSE351, Winter 2024

https://courses.cs.washington.edu/courses/cse351/24wi/exams/ref-mt.pdf

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Procedures |

YA/ UNIVERSITY of WASHINGTON

Lesson Summary (1/3)

+» Memory is organized into
5 segments based on data
declaration and lifetime

" Goals: maximize use of space,
manage data differently, apply
separate permissions

+» A segmentation fault is caused
by an impermissible memory
access

L10: Procedures |

High

Addresses A

Low

Addresses =

Address Space:

Stack

A\ 4

a

Dynamic Data
(Heap)

Static Data

Literals

Instructions

Local variables and
procedure context

Variables allocated
with new or malloc

Static variables
(e.g., global variables)

Immutable literals
(e.g., "example")

Program code

CSE351, Winter 2024

Writable;
not executable

Writable;
not executable

Writable;
not executable

Read-only;
not executable

Read-only;
executable

YA/ UNIVERSITY of WASHINGTON

L10: Procedures |

Lesson Summary (2/3)

Stack “Bottom”

+ The Stack is the memory segment with the Higher
highest addresses and grows downward Addresses

= Stack “top” (lowest address) is defined
by the value of the stack pointer (%rsp) Lower

= Can manipulate using add, sub, push, and pop Addresses

+ Procedure calling conventions for passing control and data
= call and ret pass control using %r-ip and a return address on the stack
" Arguments: %rd-i, %rsi, %rdx, %rcx, %r8, %r9, Stack
= Return value: %rax

Stack “Top”

CSE351, Winter 2024

add

Pop
ret

%rsp

l sub
push

call

YA/ UNIVERSITY of WASHINGTON L10: Procedures |

Lesson Summary (3/3)

+ Stack organized into stack frames
that hold a procedure instance’s data
= Size will vary based on procedure specifics

= Space gets allocated as procedure executes,
deallocated by the time it returns

whoa

I

who

N

aml amlI o

| :

aml

|

aml

CSE351, Winter 2024

Stack

whoa

rsp-——)g

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Lesson Q&A

+ Learning Objectives:

= Determine the location/segment in memory that a piece of data will be stored
based on the nature of that data (i.e., static, literals, etc.).

" Trace stack frame movement and creation.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Procedures | — Practice

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Practice Questions (1/2)

+» How does the stack change after executing the following instructions?

ﬁu /\pushq srbp 1 hiper
I " resses
o /subq $Ox18, %rsp # gvo> B B skr/nrak/ Stack
loch‘(s oxm B ZH ﬂ'— ﬁv'w 2-"(B er(—> - - .- -
408 € \l/

W b\/ 28 ("yrow’ \b :;;:e:scs

+ For the following function, which registers do we know must be used?

void* memset(void*x ptr, int value, size_t num);

return walue \'V\(_zm\x-) argumen‘U m (7 7ordt J besi _ and % rA{

'%FSEI changeA ‘37 call é ret

YA/ UNIVERSITY of WASHINGTON : Procedures | CSE351, Winter 2024

Practice Questions (2/2)

+» Answer the following questions about when main () is run (assume x
and y stored on the Stack):

int@() { int randSum(int n) {
int i, x = 0; int y :()%20;
for('i:O;'i<%°i-i++) return n+y;
= (randSum(x) ; }
"x = %d\n",x);
return 0;
} VPN .
| T |)
= Higher/larger address: @or y? ﬂ(lvwsum((o) - le\ o (f)
" How many total stack frames [rend, |5 [, [) | e l‘>
are created? %

= What is the maximum depth
(# of frames) of the Stack? A. B.2|C. 3D. 4

10

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Procedures | — Context

11

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Simplified Memory Layout

High Address Space: What Goes Here:
Addresses A OXF..F

Stack Local variables and procedure context

Dynamic Data Variables allocated with new or malloc

Memory (Heap)
Addresses
Static Data Static variables (including global variables)
Literals Immutable literals/constants (e.g., "example")
Instructions Program code
tow —]10x0...0

Addresses

12

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

. This is ext
X86-64 Linux Memory Layout (non-testable)
OxOOO07FFFFFFFFFFF material
Stack
+ Stack 1
= Runtime stack has 8 MiB limit
« Heap Heap
= Dynamically allocated as needed
v

" malloc(), calloc(), new, ...

Statically allocated data (Data) Shared

_ _ Libraries
= Read-only: string literals
= Read/write: global arrays and variables

L)

0’0

. : 4
+» Code / Shared Libraries ;
eap
= Executable machine instructions =
ata
= Read-only Instructions

Hex Address Ox400000
OX000000 13

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Stack Overflow

+» When the stack pointer exceeds the stack bounds (segmentation fault)

" |n theory: when it collides with the Heap
" |n x86-64 Linux, when it exceeds 8 MiB limit

+» Causes?
" |nfinite/deep recursion
= Very large local variables

+ Fixes?
= Use iterative solution, compiler tail-call optimization

= Allocate large variables elsewhere (more on the Heap later this quarter)

14

YA/ UNIVERSITY of WASHINGTON CSE351, Winter 2024

Aside: Stack Overflow

+» Has nothing to do with actual stack overflow — named based on poll of
blog users; some of the non-winning options:
= algorithmical
= bitoriented
= dereferenced
= fellowhackers
= humbleprogrammers
= privatevoid
= shiftleftl
= understandrecursion

+ Crowd-sourced their logo for $512

15

YA/ UNIVERSITY of WASHINGTON L10: Procedures | CSE351, Winter 2024

Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

<+ Naming/etymology plays a big role in learning

= Which new terms in this class have been the most intuitive for you to learn vs. the
most difficult?

= What do you think goes into a good vs. bad name more generally in computer
science?

16

YA/ UNIVERSITY of WASHINGTON L10: Procedures |

CSE351, Winter 2024

Group Work Time

+ During this time, you are encouraged to work on the following:
1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

<« Resources:

® You can revisit the lesson material
= Work together in groups and help each other out

= Course staff will circle around to provide support

17

