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Relevant Course Information

«» HWS5 due tonight, HW6 due Monday, HW7 due Wednesday

+» Lab 1a grades hopefully released by end of Sunday (1/21)

+ Lab 1b due Monday (1/22) at 11:59 pm

No major programming restrictions, but should avoid magic numbers by using C
macros (#define)

For debugging, can use provided utility functions print_binary short() and
print_binary_long()

Pay attention to the output of aisle _test and store_test —failed tests will show
you actual vs. expected

You have late day tokens available
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Getting Help with 351

Lecture recordings, lessons, inked slides, section worksheet solutions

>

» Attend lectures and support hours

® Can also chat with other students— help each other learn!

» Form a study group!
" Good for everything but labs, which should be done in pairs

" Communicate regularly, use the class terminology, ask and answer each others’
qguestions, show up to SH together

« Post on Ed Discussion

» Request a 1-on-1 meeting
= Available on a limited basis for special circumstances
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Lesson Summary (1/2)

«» Assembly programmer-visible state:

+» X86-64 is a complex instruction set
computing (CISC) architecture

[ CPU
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= x86-64 integer instruction common forms: instr op and instr src, dst
- Fixed width specified by size suffix: b (1 byte), w (2 bytes), 1 (4 bytes), or g (8 bytes)

" |nstruction types:
- Data transfer (e.g., movg (%rsi), %rdx)
. Arithmetic (e.g., imulg $3, %rsi)
- Control Flow (e.qg., ret)
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Lesson Summary (2/2)

+» X86-64 is a complex instruction set computing (CISC) architecture

= x86-64 integer instruction common forms: instr op and instr src, dst
- Fixed width specified by size suffix: b (1 byte), w (2 bytes), 1 (4 bytes), or g (8 bytes)
" Operand types:
- Immediate ($) is a literal (e.g., imulg $3, %rsi)
- Register (%) is a general-purpose integer register or sub-register (e.g., movqg (%rsi), %rdx)
- Memory (()) is a way to express an address (e.g., movq (%rsi), %rdx)

%rax %eax %ax  [ka %r8 %r8d [or8w [Zreb |

%rbx %ebx %r9 %rod [orow [arob |

AN hecx %cx Bl | |%rle %r10d %r10w

%rdx hedx %dx %r11 %rild %rilu

%rsi hesi %r12 %r12d %ri2b

%rdi %edi %r13 %r13d %ri3w

%rsp %esp. [sp_eel | [%r14 %r14d rah

%rbp |%ebp. %bp [%bpl | |%r15 %ri15d %r15w

8 bytes 4 bytes 2 bytes 1 byte 8 bytes 4 bytes 2 bytes 1 byte 6
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Lesson Q&A

+ Learning Objectives:

" Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions
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Practice
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Polling Questions (1/2)

«» Assume that the register %rax currently holds the value

Vx 0102030405060/ 03

+» Answer the questions on Ed Lessons about the following instruction
(<instr> <src> <dst>):
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Polling Questions (2/2)

+» Which of the following are valid implementations of rcx = rax + rbx?

Xaddq %rax, %rcx \/movq %r‘ax,fgr‘cx
addq %rbx; %rcx addq %rbx,” %rcx
rCx = vex + rax—+ rlox rex. = vax + b=
Yuova 50,3 %
movq $0, %rcx X xorq %rax , frax <m= 0)
addq %rbx,” %rcx addq /r‘ax/‘?r‘cx
addq %rax,” %rcx addg /r\bx/‘?r\cx

rex= O+ rbx+rax rex = oex + 0+ rbx

10
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Homework Setup

+ Do the following operand types have an implied size?

" An immediate operand is a literal/constant (e.g., $3)
(\/U ) cowld be Ox O3J OXQ)O}) &0}00&)9)/ et

= A register operand is the value stored in a register (e.g., %rdx)
Yﬁ), lodle up i register frld e (7of0\>< R Y byt wie)
= A memory operand represents an address in memory (e.g., (%rsi))
l\) 0, add res) )'NT 9IVe Uy The d&r+mj rx\'v\‘\' st the ddn
(the addres dee\F & 4 word srzc_/i'b.wj\)

11
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Context
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Instruction Set Philosophies, Revisited

« Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

" Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

13
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Instruction Set Philosophies, Revisited

« Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

" Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

= Both pursue efficiency (minimalism is a means to an end)

14
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Mainstream ISAs, Revisited

inteL arm

1ISC

ARM P RISC-V
- [DOoes an t hing\ .-
Bits 16-bit, 32-bit and 64-bit Berkeley
Introduced 1978 (16-bit), 1985 (32-bit), 2003 Introduced 1985 Bits 32-64-128
(64-bit) - ll .M_-,, .
Type Register-memory |:ncod|ng AArch64/A64 and AArch32/A32 pre
Encoding Variable (1 to 15 bytes) use 32-bit instructions, T32 Encod.nﬂ

Liaflel113]

Branching Condition code (Th -nb - T~ g o~
Endianness Little I S a S C a p e

Branching Ceondition code, compare and
branch

Endianness Bi (little as default)

Macbooks & PCs Smartphone-like devices M
(Core i3, i5,i7, M) (iPhone, iPad, Raspberry Pi) (
x86-64 Instruction Set ARM Instruction Set

me traction in embedde
ISC-V Instruction Set

15


http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
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Tech Monopolization

>

How many “dominant” ISAs are there?
= 2:x86, ARM
» How many “dominant” phone brands are there?
= 4:Samsung, Apple, Huawei, Xiaomi
» How many “dominant” operating systems are there?
= 3/4: Android, i0OS/macOS, Windows, Linux (?)

+» How many “dominant” chip manufacturers are there?
= 3:Intel, Samsung, TSMC

*

It wasn’t always this way!

= Combination of antitrust policies and (lack of) enforcement

CSE351, Winter 2024
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Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+» How do you feel about tech monopolization?

" What are the benefits and disadvantages of this landscape for
(1) the monopolizing companies and (2) the consumers?

" These big tech companies are now worth billions of dollars. What might we try if
we wanted to break up the monopolization?

17
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Group Work Time

CSE351, Winter 2024

« During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

Resources:
®" You can revisit the lesson material

= Work together in groups and help each other out

" Course staff will circle around to provide support



