W UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

x86-64 Programming |

CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen

Eyoel Gebre
Jiawei Huang
Malak Zaki

Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

SKATING UPHILL LIKE THIS 15
AMAZING. YERARS OF GLIDING
DOWNHILL AND PUSHING

UPHILL, AND NOW SUDDENLY

ASSEMBLY MAKES YOU
\ ABETTER PROGRANMER-

HOW MUCH TIME YOU WERE
SPENDING ON THE BORING
PaRTS UNTILYOU DON'T HAVE

CSE351, Winter 2024

PEPENPS HOW You
\WANT TO SPEND YOUR
LIFE. SEE, MY

PHILOSOPHY 15—

http://xkcd.com/409/

http://xkcd.com/409/

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Relevant Course Information

«» HWS5 due tonight, HW6 due Monday, HW7 due Wednesday

+» Lab 1a grades hopefully released by end of Sunday (1/21)

+ Lab 1b due Monday (1/22) at 11:59 pm

No major programming restrictions, but should avoid magic numbers by using C
macros (#define)

For debugging, can use provided utility functions print_binary short() and
print_binary_long()

Pay attention to the output of aisle _test and store_test —failed tests will show
you actual vs. expected

You have late day tokens available

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Getting Help with 351

Lecture recordings, lessons, inked slides, section worksheet solutions

>

» Attend lectures and support hours

® Can also chat with other students— help each other learn!

» Form a study group!
" Good for everything but labs, which should be done in pairs

" Communicate regularly, use the class terminology, ask and answer each others’
qguestions, show up to SH together

« Post on Ed Discussion

» Request a 1-on-1 meeting
= Available on a limited basis for special circumstances

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

x86-64 Programming |

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

Lesson Summary (1/2)

«» Assembly programmer-visible state:

+» X86-64 is a complex instruction set
computing (CISC) architecture

[CPU

~

Program Counter

Addresses ‘

CSE351, Winter 2024

Registers

Data

Condition Codes

Instructions

&

J

Memory

Code
Data

= x86-64 integer instruction common forms: instr op and instr src, dst
- Fixed width specified by size suffix: b (1 byte), w (2 bytes), 1 (4 bytes), or g (8 bytes)

" |nstruction types:
- Data transfer (e.g., movg (%rsi), %rdx)
. Arithmetic (e.g., imulg $3, %rsi)
- Control Flow (e.qg., ret)

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Lesson Summary (2/2)

+» X86-64 is a complex instruction set computing (CISC) architecture

= x86-64 integer instruction common forms: instr op and instr src, dst
- Fixed width specified by size suffix: b (1 byte), w (2 bytes), 1 (4 bytes), or g (8 bytes)
" Operand types:
- Immediate ($) is a literal (e.g., imulg $3, %rsi)
- Register (%) is a general-purpose integer register or sub-register (e.g., movqg (%rsi), %rdx)
- Memory (()) is a way to express an address (e.g., movq (%rsi), %rdx)

%rax %eax %ax [ka %r8 %r8d [or8w [Zreb |

%rbx %ebx %r9 %rod [orow [arob |

AN hecx %cx Bl | |%rle %r10d %r10w

%rdx hedx %dx %r11 %rild %rilu

%rsi hesi %r12 %r12d %ri2b

%rdi %edi %r13 %r13d %ri3w

%rsp %esp. [sp_eel | [%r14 %r14d rah

%rbp |%ebp. %bp [%bpl | |%r15 %ri15d %r15w

8 bytes 4 bytes 2 bytes 1 byte 8 bytes 4 bytes 2 bytes 1 byte 6

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Lesson Q&A

+ Learning Objectives:

" Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions

X86-64 Programming |=

Practice

W UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

Polling Questions (1/2)

«» Assume that the register %rax currently holds the value

Vx 0102030405060/ 03

+» Answer the questions on Ed Lessons about the following instruction
(<instr> <src> <dst>):

e)‘d‘«) e ov CA) ’_XO%N

- 70 roxX

Operation type:
Operand types:
Operation width:
(extra) Result in %rax:

e — % ax

$'1) %_—X

[oY el f o‘oercd DN \

\Y
Source - (mmed 70:"@—

) Aestinadt®™n: register

2 Ey‘fes (nk)or\d“)

Ox 0t &
r~ OﬁFFi

OxF§FF = ro

] 6 Ol 02 03 6 05 06 FE E

—_—

CSE351, Winter 2024

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Polling Questions (2/2)

+» Which of the following are valid implementations of rcx = rax + rbx?

Xaddq %rax, %rcx \/movq %r‘ax,fgr‘cx
addq %rbx; %rcx addq %rbx,” %rcx
rCx = vex + rax—+ rlox rex. = vax + b=
Yuova 50,3 %
movq $0, %rcx X xorq %rax , frax <m= 0)
addq %rbx,” %rcx addq /r‘ax/‘?r‘cx
addq %rax,” %rcx addg /r\bx/‘?r\cx

rex= O+ rbx+rax rex = oex + 0+ rbx

10

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Homework Setup

+ Do the following operand types have an implied size?

" An immediate operand is a literal/constant (e.g., $3)
(\/U) cowld be Ox O3J OXQ)O}) &0}00&)9)/ et

= A register operand is the value stored in a register (e.g., %rdx)
Yﬁ), lodle up i register frld e (7of0\>< R Y byt wie)
= A memory operand represents an address in memory (e.g., (%rsi))
l\) 0, add res))'NT 9IVe Uy The d&r+mj rx\'v\‘\' st the ddn
(the addres dee\F & 4 word srzc_/i'b.wj\)

11

X86-64 Programming |=

Context

W UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

CSE351, Winter 2024

Instruction Set Philosophies, Revisited

« Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

" Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

13

W UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

CSE351, Winter 2024

Instruction Set Philosophies, Revisited

« Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

" Design goals: complete tasks in as few instructions as possible; minimize memory
accesses for instructions

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

" Design goals: build fast hardware; instructions should complete in few clock cycles
(ideally 1); minimize complexity and maximize performance

+» How different are these two philosophies, really?

= Both pursue efficiency (minimalism is a means to an end)

14

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Mainstream ISAs, Revisited

inteL arm

1ISC

ARM P RISC-V
- [DOoes an t hing\ .-
Bits 16-bit, 32-bit and 64-bit Berkeley
Introduced 1978 (16-bit), 1985 (32-bit), 2003 Introduced 1985 Bits 32-64-128
(64-bit) - ll .M_-,, .
Type Register-memory |:ncod|ng AArch64/A64 and AArch32/A32 pre
Encoding Variable (1 to 15 bytes) use 32-bit instructions, T32 Encod.nﬂ

Liaflel113]

Branching Condition code (Th -nb - T~ g o~
Endianness Little I S a S C a p e

Branching Ceondition code, compare and
branch

Endianness Bi (little as default)

Macbooks & PCs Smartphone-like devices M
(Core i3, i5,i7, M) (iPhone, iPad, Raspberry Pi) (
x86-64 Instruction Set ARM Instruction Set

me traction in embedde
ISC-V Instruction Set

15

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

Tech Monopolization

>

How many “dominant” ISAs are there?
= 2:x86, ARM
» How many “dominant” phone brands are there?
= 4:Samsung, Apple, Huawei, Xiaomi
» How many “dominant” operating systems are there?
= 3/4: Android, i0OS/macOS, Windows, Linux (?)

+» How many “dominant” chip manufacturers are there?
= 3:Intel, Samsung, TSMC

*

It wasn’t always this way!

= Combination of antitrust policies and (lack of) enforcement

CSE351, Winter 2024

16

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE351, Winter 2024

Discussion Questions

+ Discuss the following question(s) in groups of 3-4 students

= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+» How do you feel about tech monopolization?

" What are the benefits and disadvantages of this landscape for
(1) the monopolizing companies and (2) the consumers?

" These big tech companies are now worth billions of dollars. What might we try if
we wanted to break up the monopolization?

17

W UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

Group Work Time

CSE351, Winter 2024

« During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

Resources:
®" You can revisit the lesson material

= Work together in groups and help each other out

" Course staff will circle around to provide support

