Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/953/
Relevant Course Information

❖ Upcoming deadlines
 ▪ Pre-Course Survey and HW0 due tonight
 ▪ HW1 due Monday (1/8)
 ▪ Lab 0 due Monday (1/8)
 • This lab is *exploratory* and looks like a HW; the other labs will look a lot different

❖ Ed Discussion etiquette
 ▪ For anything that doesn’t involve sensitive information or a solution, post publicly (you can post anonymously!)
 ▪ If you feel like you question has been sufficiently answered, make sure that a response has a checkmark
EPA

❖ Encourage class-wide learning!

❖ Effort
 ▪ Attending support hours, completing all assignments
 ▪ Keeping up with Ed Discussion activity

❖ Participation
 ▪ Making the class more interactive by asking questions in lecture, section, support hours, and on Ed Discussion

❖ Altruism
 ▪ Helping others in section, support hours, and on Ed Discussion
Lesson Summary (1/2)

❖ Memory is a long, byte-addressed array
 ▪ Word size bounds the size of the address space and memory
 ▪ Address of a chunk of memory given by the address of the lowest byte in chunk

❖ Endianness determines memory storage order for multi-byte data
 ▪ Least significant byte in lowest (little-endian) or highest (big-endian) address of memory chunk

[Diagram showing memory addresses and data (shown in hex)]
Lesson Summary (2/2)

❖ Programming Data

- Variable declaration allocates space for data type size
- Assignment results in value being put in memory location

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>x86-64 Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1B</td>
</tr>
<tr>
<td>short</td>
<td>2B</td>
</tr>
<tr>
<td>int</td>
<td>4B</td>
</tr>
<tr>
<td>long</td>
<td>8B</td>
</tr>
<tr>
<td>long long</td>
<td>8B</td>
</tr>
<tr>
<td>float</td>
<td>4B</td>
</tr>
<tr>
<td>double</td>
<td>8B</td>
</tr>
<tr>
<td>long double</td>
<td>16B</td>
</tr>
</tbody>
</table>

```
0x00 0x01 0x02 0x03
A7 00 32 00
00 01 29 F3
DE AD BE EF
FA CE CA FE
26 00 00 00
00 00 10 00
01 00 00 00
FF 00 F4 96
EE EE EE EE
00 00 00 00
```
Lesson Q&A

❖ Learning Objectives:
 ▪ (Define the concept of pointers and) their significance in computer memory organization.
 ▪ (Design code that can correctly) interpret and manipulate multi-byte data in both little-endian and big-endian byte orderings.

❖ What lingering questions do you have from the lesson?
 ▪ Chat with your neighbors about the lesson for a few minutes to come up with questions
Memory & Data I – Practice
Polling Questions (1/2)

❖ By looking at the bits stored in memory, I can tell what a particular 4 bytes is being used to represent.
 A. True B. False

❖ We can fetch a piece of data from memory as long as we have its address.
 A. True B. False

❖ Which of the following bytes have a most-significant bit (MSB) of 1?
 A. 0x63 B. 0x90 C. 0xCA D. 0xF 0x0F
Polling Questions (2/2)

- We store the value \(0x\ 01\ 02\ 03\ 04\) as a word at address \(0x100\) in a big-endian, 64-bit machine.

- What is the byte of data stored at address \(0x104\)?

A. \(0x04\)
B. \(0x40\)
C. \(0x01\)
D. \(0x10\)
E. We’re lost...
Homework Setup

❖ Assume that a snippet of memory is shown below (in hex), starting with the byte at address 0x08 on a little-endian machine:

addr: 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
data: | A2 | D0 | 4F | C4 | A0 | 0C | F7 | 27 |

❖ What is the value of the int stored at address 0x0C?
Memory & Data I – Context
Modern System Details

- Current x86-64 systems use **64-bit (8-byte) words** ("64-bit machines")
 - Potential address space: 2^{64} addresses
 - 2^{64} bytes ≈ 1.8×10^{19} bytes
 - = 18 billion billion bytes = 18 EB (exabytes)
 - Actual physical address space: 48 bits
 - This is sufficient space for now and allows for some operating system tricks
 - Example address: 0x 7f fc 3d d5 06 94

- There’s a lot more to this story... stay tuned for virtual memory!
Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students
 ▪ I will call on a few groups afterwards so please be prepared to share out
 ▪ Be respectful of others’ opinions and experiences

❖ Over time, computers have grown in word size:

<table>
<thead>
<tr>
<th>Word size</th>
<th>Instruction Set Architecture</th>
<th>First? Intel CPU</th>
<th>Year Introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit</td>
<td>??? (Poor & Pyle)</td>
<td>Intel 8008</td>
<td>1972</td>
</tr>
<tr>
<td>16-bit</td>
<td>x86</td>
<td>Intel 8086</td>
<td>1978</td>
</tr>
<tr>
<td>32-bit</td>
<td>IA-32</td>
<td>Intel 386</td>
<td>1985</td>
</tr>
<tr>
<td>64-bit</td>
<td>IA-64</td>
<td>Itanium (Merced)</td>
<td>2001</td>
</tr>
<tr>
<td>64-bit</td>
<td>x86-64</td>
<td>Xeon (Nocona)</td>
<td>2004</td>
</tr>
</tbody>
</table>

❖ What do you think were some of the causes, advantages, and disadvantages of this trend?
Group Work Time

❖ During this time, you are encouraged to work on the following:
 1) If desired, continue your discussion
 2) Work on the homework problems
 3) Work on the lab (if applicable)

❖ Resources:
 ▪ You can revisit the lesson material
 ▪ Work together in groups and help each other out
 ▪ Course staff will circle around to provide support