The Hardware/Software Interface
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/676/
Quarter Specifics
Course Staff

❖ Instructor: just call me Justin
 ▪ CSE Associate Teaching Professor
 ▪ Raising a toddler takes up energy and dictates my schedule

❖ TAs:

❖ More than anything, we want you to feel...
 ✓ Comfortable and welcome in this space
 ✓ Able to learn and succeed in this course
 ✓ Comfortable reaching out if you need help or want change
Bookmarks

❖ Website: https://courses.cs.washington.edu/courses/cse351/24wi/
 ▪ Schedule, policies, materials, tutorials, assignment specs, etc.

❖ Ed Course: https://edstem.org/us/courses/50549/
 ▪ Discussion: announcements, ask and answer questions
 ▪ Lessons: lessons, practice problems, homework

❖ Linked from website and Ed
 ▪ Canvas: surveys, grade book, Zoom links
 ▪ Gradescope: lab submissions, take-home exams
 ▪ Panopto: lecture recordings
Grading

- **Lesson Problems:** 6%
 - Can reveal solution after one attempt (completion)

- **Homework:** 20% total
 - Unlimited submission attempts (autograded correctness)

- **Labs:** 40% total
 - Last submission graded (correctness)

- **Exams:** Midterm (16%) and Final (16)
 - Take-home; individual, but some discussion permitted

- **EPA:** Effort, Participation, and Altruism (2%)
Support Hours

- Check Weekly Calendar on website for scheduled support hours:
 - In-person or virtual, but NOT hybrid
 - Zoom meeting links found in Zoom tab within Canvas

- All support hours will use a Google Sheets queue:
 - Fill out first 3 columns to enter queue:

- We encourage you to chat with other students if the TAs are busy!
In-Person Support Hours

- Allen 3rd & 4th floor breakouts
 - Up the stairs in the CSE Atrium (Allen Center, not Gates)

- The open areas with the whiteboard walls are the breakouts!
Lecture Polls and Discussions

- Increase learning, test your understanding, increase student interactions, makes the class more engaging and fun
 - Lot of research supports its effectiveness:

- Polls on technical material will be multiple-choice and short answer
 - You haven’t mastered the material yet; mistakes are part of the process!

- Discussion questions will be more open-ended
 - Be respectful of others’ opinions and experiences

- Respond on Lecture Ed lesson for credit (extra late day tokens) and we will use *random call* to solicit live responses from audience
 - Don’t need to be correct, just want the feedback of what was discussed
To-Do List

❖ Admin
 ▪ Explore/read the course website *thoroughly*, especially the syllabus
 ▪ Check that you can access Ed Discussion & Lessons
 ▪ Get your machine set up to access the CSE Linux environment *(attu or cancun)* as soon as possible
 ▪ Optionally, sign up for CSE 391: System and Software Tools

❖ Assignments
 ▪ Pre-Course Survey and hw0 due Friday (1/5)
 ▪ HW1 and Lab 0 due Monday (1/8)
 ▪ Lessons quiz questions due 11:59 pm *after* the associated lecture
Binary and Numerical Representation
Lesson Summary

❖ Humans think about numbers in decimal; computers think about numbers in binary
 ▪ Base conversion: digit d in position i in base b has a decimal value of $d \times b^i$
 • Changing bases does not change the value; just a different representation
 ▪ Hexadecimal (base 16, prefix 0x) is more human-readable than binary (base 2, prefix 0b)
 ▪ Unit of data in a computer is 1 byte = 8 bits = 2 hex digits

❖ Binary encoding can represent anything!
 ▪ Computer/program needs to know how to interpret the bits

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
<th>Base 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0b0000</td>
<td>0x0</td>
</tr>
<tr>
<td>1</td>
<td>0b0001</td>
<td>0x1</td>
</tr>
<tr>
<td>2</td>
<td>0b0010</td>
<td>0x2</td>
</tr>
<tr>
<td>3</td>
<td>0b0011</td>
<td>0x3</td>
</tr>
<tr>
<td>4</td>
<td>0b0100</td>
<td>0x4</td>
</tr>
<tr>
<td>5</td>
<td>0b0101</td>
<td>0x5</td>
</tr>
<tr>
<td>6</td>
<td>0b0110</td>
<td>0x6</td>
</tr>
<tr>
<td>7</td>
<td>0b0111</td>
<td>0x7</td>
</tr>
<tr>
<td>8</td>
<td>0b1000</td>
<td>0x8</td>
</tr>
<tr>
<td>9</td>
<td>0b1001</td>
<td>0x9</td>
</tr>
<tr>
<td>10</td>
<td>0b1010</td>
<td>0xA</td>
</tr>
<tr>
<td>11</td>
<td>0b1011</td>
<td>0xB</td>
</tr>
<tr>
<td>12</td>
<td>0b1100</td>
<td>0xC</td>
</tr>
<tr>
<td>13</td>
<td>0b1101</td>
<td>0xD</td>
</tr>
<tr>
<td>14</td>
<td>0b1110</td>
<td>0xE</td>
</tr>
<tr>
<td>15</td>
<td>0b1111</td>
<td>0xF</td>
</tr>
</tbody>
</table>
Lesson Q&A

❖ Learning Objectives:
 ▪ Convert between binary, decimal, and hexadecimal number representations.
 ▪ Given an encoding scheme, decode and encode binary to/from its intended representation.
 ▪ Identify limitations of given encoding schemes.

❖ What lingering questions do you have from the lesson?
 ▪ Introduce yourself to your neighbors and chat about the lesson for a few minutes to come up with questions
Binary and Numerical Representation – Practice
Polling Questions

❖ What is the decimal value of the numeral 107_8?
A. 71
B. 87
C. 107
D. 568

❖ What is the decimal number 108 in hex?
A. 0x6C
B. 0xA8
C. 0x108
D. 0x612

❖ Represent 0b100110110101101 in hex.

❖ Represent 0x3C9 in binary.
Homework Setup

- Binary alphabet using five 4-bit numbers stacked on top of each other:

 \[
 \begin{array}{cccc}
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 1 \\
 \end{array}
 \]

 □ □ □ □

 □ □ □ □ □

 0x69F99 → 1 1 1 1 → □ □ □ □ □

- What string of 5 hex digits represents a “C”?
Binary and Numerical Representation – Context
Why Base 2?

❖ Electronic implementation
 ▪ Easy to store with bi-stable elements
 ▪ Reliably transmitted on noisy and inaccurate wires

❖ Other bases possible, but not yet viable:
 ▪ DNA data storage (base 4: A, C, G, T) is hot @UW
 ▪ Quantum computing
Binary Encoding – Colors

❖ RGB – Red, Green, Blue
 - Additive color model (light): byte (8 bits) for each color
 - Commonly seen in hex (in HTML, photo editing, etc.)
 - Examples: Blue→0x0000FF, Gold→0xFFD700, White→0xFFFFFF, Deep Pink→0xFF1493
Binary Encoding – Characters/Text

- ASCII Encoding (www.asciitable.com)
 - American Standard Code for Information Interchange

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>Char</th>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>Html</th>
<th>Chr</th>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>Html</th>
<th>Chr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NUL (null)</td>
<td>32</td>
<td>20</td>
<td>0</td>
<td>$#32$</td>
<td><Space ></td>
<td>54</td>
<td>40</td>
<td>00</td>
<td>$#64$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>SOH (start of heading)</td>
<td>33</td>
<td>21</td>
<td>01</td>
<td>$#34$</td>
<td>35</td>
<td>41</td>
<td>01</td>
<td>$#67$</td>
<td>97</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>02</td>
<td>STX (start of text)</td>
<td>34</td>
<td>22</td>
<td>02</td>
<td>$#33$</td>
<td>56</td>
<td>40</td>
<td>10</td>
<td>$#66$</td>
<td>c</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>03</td>
<td>ETX (end of text)</td>
<td>35</td>
<td>23</td>
<td>03</td>
<td>$#35$</td>
<td>57</td>
<td>41</td>
<td>10</td>
<td>$#65$</td>
<td>e</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>04</td>
<td>EOT (end of transmission)</td>
<td>36</td>
<td>24</td>
<td>04</td>
<td>$#36$</td>
<td>58</td>
<td>41</td>
<td>10</td>
<td>$#65$</td>
<td>g</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>05</td>
<td>ENQ (enquiry)</td>
<td>37</td>
<td>25</td>
<td>05</td>
<td>$#37$</td>
<td>59</td>
<td>45</td>
<td>10</td>
<td>$#69$</td>
<td>i</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>06</td>
<td>ACK (acknowledge)</td>
<td>38</td>
<td>26</td>
<td>06</td>
<td>$#38$</td>
<td>60</td>
<td>45</td>
<td>10</td>
<td>$#6a$</td>
<td>j</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>07</td>
<td>BEL (bell)</td>
<td>39</td>
<td>27</td>
<td>07</td>
<td>$#39$</td>
<td>61</td>
<td>45</td>
<td>10</td>
<td>$#6b$</td>
<td>k</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>08</td>
<td>BS (backspace)</td>
<td>40</td>
<td>28</td>
<td>00</td>
<td>$#40$</td>
<td>62</td>
<td>45</td>
<td>10</td>
<td>$#6c$</td>
<td>l</td>
<td>104</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>09</td>
<td>HT (horizontal tab)</td>
<td>41</td>
<td>29</td>
<td>01</td>
<td>$#41$</td>
<td>63</td>
<td>45</td>
<td>10</td>
<td>$#6d$</td>
<td>m</td>
<td>105</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>01</td>
<td>LF (line feed, new line)</td>
<td>42</td>
<td>2a</td>
<td>02</td>
<td>$#42$</td>
<td>64</td>
<td>45</td>
<td>10</td>
<td>$#6e$</td>
<td>n</td>
<td>106</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>02</td>
<td>VT (vertical tab)</td>
<td>43</td>
<td>2b</td>
<td>03</td>
<td>$#43$</td>
<td>65</td>
<td>45</td>
<td>10</td>
<td>$#6f$</td>
<td>o</td>
<td>107</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>04</td>
<td>FF (NP fork feed, new page)</td>
<td>44</td>
<td>2c</td>
<td>04</td>
<td>$#44$</td>
<td>70</td>
<td>46</td>
<td>11</td>
<td>$#70$</td>
<td>p</td>
<td>108</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>05</td>
<td>CR (carriage return)</td>
<td>45</td>
<td>2d</td>
<td>05</td>
<td>$#45$</td>
<td>71</td>
<td>47</td>
<td>11</td>
<td>$#71$</td>
<td>q</td>
<td>109</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>06</td>
<td>SO (shift out)</td>
<td>46</td>
<td>2e</td>
<td>06</td>
<td>$#46$</td>
<td>72</td>
<td>47</td>
<td>11</td>
<td>$#72$</td>
<td>r</td>
<td>110</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>07</td>
<td>SI (shift in)</td>
<td>47</td>
<td>2f</td>
<td>07</td>
<td>$#47$</td>
<td>73</td>
<td>47</td>
<td>11</td>
<td>$#73$</td>
<td>s</td>
<td>111</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>00</td>
<td>DLE (data link escape)</td>
<td>48</td>
<td>30</td>
<td>00</td>
<td>$#48$</td>
<td>74</td>
<td>47</td>
<td>11</td>
<td>$#74$</td>
<td>t</td>
<td>112</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>01</td>
<td>DC1 (device control 1)</td>
<td>49</td>
<td>31</td>
<td>01</td>
<td>$#49$</td>
<td>75</td>
<td>47</td>
<td>11</td>
<td>$#75$</td>
<td>u</td>
<td>113</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>02</td>
<td>DC2 (device control 2)</td>
<td>50</td>
<td>32</td>
<td>02</td>
<td>$#50$</td>
<td>76</td>
<td>47</td>
<td>11</td>
<td>$#76$</td>
<td>v</td>
<td>114</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>03</td>
<td>DC3 (device control 3)</td>
<td>51</td>
<td>33</td>
<td>03</td>
<td>$#51$</td>
<td>77</td>
<td>47</td>
<td>11</td>
<td>$#77$</td>
<td>w</td>
<td>115</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>04</td>
<td>DC4 (device control 4)</td>
<td>52</td>
<td>34</td>
<td>04</td>
<td>$#52$</td>
<td>78</td>
<td>47</td>
<td>11</td>
<td>$#78$</td>
<td>x</td>
<td>116</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>05</td>
<td>NAK (no acknowledge)</td>
<td>53</td>
<td>35</td>
<td>05</td>
<td>$#53$</td>
<td>79</td>
<td>47</td>
<td>11</td>
<td>$#79$</td>
<td>y</td>
<td>117</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>06</td>
<td>SYN (synchro idle)</td>
<td>54</td>
<td>36</td>
<td>06</td>
<td>$#54$</td>
<td>80</td>
<td>47</td>
<td>11</td>
<td>$#7a$</td>
<td>z</td>
<td>118</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>07</td>
<td>STX (start of text)</td>
<td>55</td>
<td>37</td>
<td>07</td>
<td>$#55$</td>
<td>81</td>
<td>47</td>
<td>11</td>
<td>$#7b$</td>
<td>a</td>
<td>119</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>08</td>
<td>ETX (end of text)</td>
<td>56</td>
<td>38</td>
<td>08</td>
<td>$#56$</td>
<td>82</td>
<td>47</td>
<td>11</td>
<td>$#7c$</td>
<td>b</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>09</td>
<td>EOT (end of transmission)</td>
<td>57</td>
<td>39</td>
<td>09</td>
<td>$#57$</td>
<td>83</td>
<td>47</td>
<td>11</td>
<td>$#7d$</td>
<td>c</td>
<td>121</td>
</tr>
<tr>
<td>26</td>
<td>A</td>
<td>10</td>
<td>ENQ (enquiry)</td>
<td>58</td>
<td>40</td>
<td>0a</td>
<td>$#58$</td>
<td>84</td>
<td>47</td>
<td>11</td>
<td>$#7e$</td>
<td>d</td>
<td>122</td>
</tr>
<tr>
<td>27</td>
<td>B</td>
<td>11</td>
<td>ACK (acknowledge)</td>
<td>59</td>
<td>41</td>
<td>0b</td>
<td>$#59$</td>
<td>85</td>
<td>47</td>
<td>11</td>
<td>$#7f$</td>
<td>e</td>
<td>123</td>
</tr>
<tr>
<td>28</td>
<td>C</td>
<td>12</td>
<td>BEL (bell)</td>
<td>60</td>
<td>42</td>
<td>0c</td>
<td>$#60$</td>
<td>86</td>
<td>47</td>
<td>11</td>
<td>$#80$</td>
<td>f</td>
<td>124</td>
</tr>
<tr>
<td>29</td>
<td>D</td>
<td>13</td>
<td>BS (backspace)</td>
<td>61</td>
<td>43</td>
<td>0d</td>
<td>$#61$</td>
<td>87</td>
<td>47</td>
<td>11</td>
<td>$#81$</td>
<td>g</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>E</td>
<td>14</td>
<td>HT (horizontal tab)</td>
<td>62</td>
<td>44</td>
<td>0e</td>
<td>$#62$</td>
<td>88</td>
<td>47</td>
<td>11</td>
<td>$#82$</td>
<td>h</td>
<td>126</td>
</tr>
<tr>
<td>31</td>
<td>F</td>
<td>15</td>
<td>LF (line feed, new line)</td>
<td>63</td>
<td>45</td>
<td>0f</td>
<td>$#63$</td>
<td>89</td>
<td>47</td>
<td>11</td>
<td>$#83$</td>
<td>i</td>
<td>127</td>
</tr>
</tbody>
</table>

What's Missing?
Binary Encoding – Characters/Text

❖ ASCII Encoding (www.asciiitable.com)
 ▪ American Standard Code for Information Interchange

❖ Created in 1963
 ▪ Memory was expensive, 32KB in brand new machines
 ▪ Economic incentive to use fewer bits for encoding

❖ Design Goals:
 ▪ Represent everything on an American typewriter as efficiently as possible
 ▪ Organize similar characters together
 • Numbers, uppercase, lowercase, then other stuff
Binary Encoding – Unicode & Emoji

❖ Unicode Standard is managed by the Unicode Consortium
 ▪ “Universal language” that uses 1-4 bytes to represent a much larger range of characters/languages, including emoji
 ▪ Adds new emojis every year, though adoption often lags: 🪖 (ninja)
 • https://emojipedia.org/new/

❖ Emojipedia demo: http://www.emojipedia.org
 ▪ Taco: 🌮 (added 2015)
 ▪ Code points: U+1F32E
 ▪ Display (as of 2023):
Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students
 ▪ I will call on a few groups afterwards so please be prepared to share out
 ▪ Be respectful of others’ opinions and experiences

❖ The Unicode Consortium publicly solicits proposals from the public for new emoji to add to future standards
 ▪ What do you think some of the decision factors are (or should be) in how many and which ones to add?
 ▪ Voting is done by a combination of paid members consisting of companies, institutions, and individuals – how do you feel about who has control and how they gained that control?
 • https://home.unicode.org/membership/members/
Group Work Time

❖ During this time, you are encouraged to work on the following:
 1) If desired, continue your discussion
 2) Work on the homework problems
 3) Work on the lab (if applicable)

❖ Resources:
 ▪ You can revisit the lesson material
 ▪ Work together in groups and help each other out
 ▪ Course staff will circle around to provide support