
Processes II & Virtual Memory I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today

○ HW20 due (11:59pm)

○ Lab4 due (11:59pm)

● Friday, 8/9

○ RD23 due (1pm)

○ HW21 due (11:59pm)

● Monday, 8/12

○ RD24 due (1pm)

○ HW22 due (11:59pm)

○ Quiz 3 out (11:59pm)

2

Lecture Topics

● Processes and context switching

○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

● Virtual Memory (VM)

○ Overview and motivation

○ VM as a tool for caching

○ Address translation

○ VM as a tool for memory management

○ VM as a tool for memory protection

3

fork Example
void fork1() {

int x = 1;
pid_t fork_ret = fork();
if (fork_ret == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

● Both parent and child start/continue execution after fork

● Child gets a copy of parent’s data - both processes start with x = 1
○ Subsequent changes to x are independent

● Shared open files - stdout is the same for both

● Can’t predict execution order of parent and child - up to the OS!

4

Modeling fork with Process Graphs

● A process graph is a useful tool for capturing the partial ordering of

statements in a concurrent program

○ Each vertex is the execution of a statement

○ a → b means a happens before b

○ Edges can be labeled with current value of variables

○ printf vertices can be labeled with output

○ Each graph begins with a vertex with no in-edges

● Any topological sort of the graph corresponds to a feasible total ordering

○ Total ordering of vertices where all edges point from left to right

5

fork Example: Possible Output

void fork1() {
int x = 1;
pid_t fork_ret = fork();
if (fork_ret == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n",

getpid(), x);
}

6

Polling Question

Which of the two sequences of outputs are possible?

void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq1 Seq2
L0 L0
L1 Bye
Bye L1
Bye L2
Bye Bye
L2 Bye

A) No No

B) No Yes

C) Yes No

D) Yes Yes

7

Fork-Exec

● fork() creates a copy of the current process

● exec*() replaces the current process’ code and address space with the

code for a different program
○ Whole family of exec calls – see exec(3) and execve(2)

void fork_exec(char* path, char* argv[]) {
pid_t fork_ret = fork();
if (fork_ret != 0) {

printf("Parent: created a child %d\n", fork_ret);
} else {

printf("Child: about to exec a new program\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

}

8

exec-ing a Program

Very high-level diagram of what happens when you

run the command “ls” in a Linux shell

○ This is the loading part of CALL!

9

exec-ing a Program (pt 2)

Very high-level diagram of what happens when you

run the command “ls” in a Linux shell

○ This is the loading part of CALL!

fork()

10

exec-ing a Program (pt 3)

Very high-level diagram of what happens when you

run the command “ls” in a Linux shell

○ This is the loading part of CALL!

fork()

exec*()

11

Lecture Topics

● Processes and context switching

○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

● Virtual Memory (VM)

○ Overview and motivation

○ VM as a tool for caching

○ Address translation

○ VM as a tool for memory management

○ VM as a tool for memory protection

12

exit: Exiting a Process

● void exit(int status)

○ Explicitly exits a process

■ Status code: 0 = normal exit, nonzero = abnormal exit

● The return statement from main() also exits a process

○ The return value is the status code

● Terminated processes still take up system resources

○ Data structures maintained by the OS

○ A process can’t clean up all of its own resources when it exits, so whose

responsibility is it?

13

Zombies

● A terminated process that is still consuming resources is called a zombie

● Parent needs to reap its zombie children (i.e. clean up its resources)

○ Parent is given exit status information, then transfers control to the OS to delete

zombie process

● What if the parent exits before reaping the child?

○ Orphaned child is reaped by init process (process 1)

■ Note: on recent Linux systems, init has been

renamed to systemd

14

wait: Synchronizing with Children

● int wait(int* child_status)

○ Suspends the current process until one of its children terminates

■ Reaps that child, then returns its PID

○ If child_status != NULL, then the *child_status value indicates why the

child process terminated

■ If NULL, that means the status was ignored

■ Special macros for interpreting this status – see man wait(2)

● Note: If parent process has multiple children, wait will return when any of the

children terminates

○ waitpid can be used to wait on a specific child process

15

wait Example

void fork_wait() {
int child_status;
if (fork() == 0) {

printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

Feasible output:

HC

HP

CT

Bye

Infeasible output:

HP

CT

Bye

HC

16

wait Example 2: Zombies

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",

getpid());
exit(0);

} else {
/* Parent */
printf("Running Parent, PID = %d\n",

getpid());
while (1); /* Infinite loop */

}
}

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

Zombie child is still

there

Need to kill parent for
init to reap the child

17

wait Example 3: Non-terminating Child

void fork8() {
if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1); /* Infinite loop */

} else {
/* Parent */
printf("Running Parent, PID = %d\n",

getpid());
exit(0);

}
}

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Child still active

after parent

terminates

Must explicitly kill the

child, or it will run forever.

18

Lecture Topics

● Processes and context switching

○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

● Virtual Memory (VM*)

○ Overview and motivation

○ VM as a tool for caching

○ Address translation

○ VM as a tool for memory management

○ VM as a tool for memory protection
*Not to be confused with Virtual Machine, which is a whole other thing

Warning: Virtual memory is pretty

complex, but crucial for

understanding how processes work

and for debugging performance

19

Memory as we know it so far… is virtual!

● Programs refer to virtual memory addresses

○ System provides private addresses for each process

● Allocation: compiler and run-time system

○ Where different program objects should be stored

○ All allocation within single virtual address space

● But…

○ We probably don’t have 2w bytes of physical memory

○ We definitely don’t have 2w bytes of physical memory for every

process

○ Processes should not interfere with each other

■ Except for specific cases where they want to share code

or data

20

Problem 1: How does everything fit?

64-bit virtual addresses can address 18 exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers a few

gigabytes

(e.g., 8,589,934,592 bytes)

(Not to scale; physical memory would be smaller

than the period at the end of this sentence

compared to the virtual address space.)

?

21

Problem 2: Memory Management

We have multiple

processes:

Process 1

Process 2

Process 3

…

Process n

×

Each process has:

Stack

Heap

Static Data

Literals

Code

…

What goes

where?

22

Problem 3: How to protect data?

What if two running programs both use the same

address in their code?

We want to make sure processes don’t access

the same physical memory locations.

Problem 4: How to share data?
… Except sometimes we do want them to share

memory!

● Inter-process communication

● Shared code

● etc.

23

How can we solve these problems?

● “Any problem in computer science can be solved by adding another level of

indirection.” – David Wheeler, inventor of the subroutine

Without indirection:

With indirection:

24

Indirection

● The ability to reference something using a name, reference, or container

instead of the value itself.

○ A flexible mapping between a name and a thing allows changing the thing without

notifying holders of the name.

○ Adds some work (now have to look up 2 things instead of 1)

○ But don’t have to track all uses of name/address (single source!)

● Examples:

○ Phone system: cell phone number portability

○ Domain Name Service (DNS): translation from name to IP address

○ Call centers: route calls to available operators, etc.

25

Indirection in Virtual Memory

● Each process gets its

own private address

space

○ Translates to some

location in physical

memory

● Solves previous

problems!

26

Mapping

● A virtual address (VA) can be mapped to either physical memory (RAM) or

on disk

○ Unused VAs may not have a mapping

○ VAs from different processes may (or may not) map to the same location in

memory/disk

27

Address Spaces

● Virtual Address Space: Set of N = 2n virtual addresses

○ {0, 1, …, N-1}

○ Corresponds to word size (so in x86-64, n = 64)

● Physical Address Space: Set of M = 2m physical addresses

○ {0, 1, …, M-1}

○ Address length m depends on hardware

● Every byte in main memory has:

○ One physical address (PA)

○ Zero, one, or more virtual addresses (VAs)

28

Review Questions

1.On a 64-bit machine currently running 8 processes, how much virtual memory is

there?

2.True or False: A 32-bit machine with 8 GiB of RAM installed would never use all

of it (in theory).

29

VM and the Memory Hierarchy

● Think of memory (virtual or physical) as an array of bytes, now split into

pages

○ Pages aligned (size is P = 2𝑝 bytes), similar to cache blocks

○ Each virtual page can be stored in any physical page (no fragmentation!)

● Pages of virtual memory are usually stored in physical memory, but spill to

disk when we run out of space

○ Kind of like a cache!

30

Memory Hierarchy: Core 2 Duo

31

Virtual Memory Design Consequences

● Large page size: typically 4-8 KiB or 2-4 MiB

○ Can be up to 1 GiB (for “Big Data” apps on big computers)

○ Much larger than cache blocks

● Fully associative

○ Any virtual page can be placed in any physical page

● Highly sophisticated, expensive replacement algorithms in OS

○ Too complicated and open-ended to be implemented in hardware

● Write-back rather than write-through

○ Really don’t want to write to disk every time we modify memory

○ Some things may never end up on disk (e.g., stack for short-lived process)

32

Why does VM work on RAM/disk?

● Avoids disk accesses because of locality

○ Same reason that L1 / L2 / L3 caches work

● The set of virtual pages that a program is “actively” accessing at any point in

time is called its working set

○ If (working set of one process ≤ physical memory):

■ Good performance for one process (after compulsory misses)

○ If (working sets of all processes > physical memory):

■ Thrashing: Performance meltdown where pages are swapped between

memory and disk continuously

● This is why your computer can feel faster when you add RAM

33

Summary

● fork makes two copies of the same process (parent & child)

○ Returns different values to the two processes

● exec* replaces current process from file (new program)

● exit or return from main to end a process

● wait or waitpid used to synchronize parent/child execution and to reap child

● Virtual memory provides:

○ Ability to use limited memory (RAM) across multiple processes

○ Illusion of contiguous virtual address space for each process

○ Protection and sharing amongst processes

34

	Slide 1: Processes II & Virtual Memory I
	Slide 2: Administrivia
	Slide 3: Lecture Topics
	Slide 4: fork Example
	Slide 5: Modeling fork with Process Graphs
	Slide 6: fork Example: Possible Output
	Slide 7: Polling Question
	Slide 8: Fork-Exec
	Slide 9: exec-ing a Program
	Slide 10: exec-ing a Program (pt 2)
	Slide 11: exec-ing a Program (pt 3)
	Slide 12: Lecture Topics
	Slide 13: exit: Exiting a Process
	Slide 14: Zombies
	Slide 15: wait: Synchronizing with Children
	Slide 16: wait Example
	Slide 17: wait Example 2: Zombies
	Slide 18: wait Example 3: Non-terminating Child
	Slide 19: Lecture Topics
	Slide 20: Memory as we know it so far… is virtual!
	Slide 21: Problem 1: How does everything fit?
	Slide 22: Problem 2: Memory Management
	Slide 23: Problem 3: How to protect data?
	Slide 24: How can we solve these problems?
	Slide 25: Indirection
	Slide 26: Indirection in Virtual Memory
	Slide 27: Mapping
	Slide 28: Address Spaces
	Slide 29: Review Questions
	Slide 30: VM and the Memory Hierarchy
	Slide 31: Memory Hierarchy: Core 2 Duo
	Slide 32: Virtual Memory Design Consequences
	Slide 33: Why does VM work on RAM/disk?
	Slide 34: Summary

