Processes Il & Virtual Memory I
CSE 351 Summer 2024

Instructor: :
Ellis Haker

3 18GB of Ram in 2027

Teaching Assistants:
Naama Amiel

Micah Chang
Shananda Dokka
Nikolas McNamee
Jiawei Huang 4kb of ramiin 1969

made with mematic "/

Administrivia

e Today

o HW20 due (11:59pm)

o Lab4 due (11:59pm)
e Friday, 8/9

o RD23 due (1pm)

o HW21 due (11:59pm)
e Monday, 8/12

o RD24 due (1pm)

o HW22due (11:59pm)

o Quiz 3 out (11:59pm)

Lecture Topics

e Processes and context switching

(@)

(@)

Creating new processes
m fork() and exec*()
Ending a process
m exit(), wait(), waitpid()
m Zombies

e Virtual Memory (VM)

(@)

O O O O

Overview and motivation

VM as a tool for caching

Address translation

VM as a tool for memory management
VM as a tool for memory protection

fork Example GO rdborm &b €30 fo ek 0 ke dill

void forkl() {
int x = 13
pid_t fork_ret = fork();
sk [f (fork_ret == 0)
printf("Child has x = %d\n", ++x);

else
printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

e Both parent and child start/continue execution after fork

e Child gets a copy of parent’s data - both processes start with x
o Subsequent changes to x are independent

e Shared openfiles - stdout is the same for both

e Can'’t predict execution order of parent and child - up to the OS!

1

Modeling fork with Process Graphs

e A process graph is a useful tool for capturing the partial ordering of

statements in a concurrent program
o Each vertex is the execution of a statement
o a — b means a happens before b
Edges can be labeled with current value of variables
o printf vertices can be labeled with output
o Each graph begins with a vertex with no in-edges

e Any topological sort of the graph corresponds to a feasible total ordering

(@)

o Total ordering of vertices where all edges point from left to right)
Ty o~w—> soctk w\,.an VL(¥CCQ$ cowm e &L.’xrb-r Wb Vef\'—’f U"/ o~ Q‘*\n e '+

fork Example: Possible Output

Tt vehovs ofin r~‘SnuﬂAr
mnbe* zf = 5(l°11 Lot QAU ot

void forkl() {
int x = 1

id_t fork_ret = fork();
&:\lﬁf (fork_ret == 0)
printf("Child has x = %d\n", ++x);
else
printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n",
getpid(), x);

¢u4ﬁ¥clu Eff&f::j:— bretedas
ﬁruls
i\
X=2 “child.. “Bye..
»@ >@ -
++X printf printf
?r(.mk X=0 “Parent... “Bye...
- 4 - 4 - 4 - J
fork --X printf printf

Polling Question

Which of the two sequences of outputs are possible? '

Seq1 Lo Seq?2
LO Lo gt
L1 ¢ n_n Bye ‘"ﬁM
void nestedfork() { Bye B L1 ,}Ai\\\
printf("LO\Nn"); Bve Lo c}""“’l
if (fork() == 0) { y " ey
printf("L1\n"); _— Bye" . Bye W
c‘"‘\\l‘ A E (Fork() =="0) { I Bye o\
YA intf("L2\n"); . “\
XJ printf(\n") we Ha A No &? NG
'} x;:’) (BLNo Yes
printf("Bye\n");
) A C) Yes No
\ D) Yes Yes

Fork-Exec

e fork() creates a copy of the current process
e execx* () replaces the current process’ code and address space with the
code for a different program
o Whole family of exec calls — see exec(3) and execve(2)

void fork_exec(charx path, charx argv[]) {
pid_t fork_ret = fork();
if (fork_ret != 0) {
printf("Parent: created a child %d\n", fork_ret);
} else {
printf("Child: about to exec a new program\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

exec-ing a Program

Very high-level diagram of what happens when you
run the command “1s” in a Linux shell

o This is the loading part of CALL!

Parent

Stack

Heap

Data

Code: fusr/bin/bash

Parent

exec-ing a Program (pt 2)

Stack

Very high-level diagram of what happens when you

run the command “1s” in a Linux shell Heap
.. . I Data
o This is the loading part of CALL! Code: usr/bin/bash
l fork()
Child
Stack
Heap
Data
Code: /usr/bin/bash

Parent

exec-ing a Program (pt 3)

Stack

Very high-level diagram of what happens when you
run the command “1s” in a Linux shell Heap

o This is the loading part of CALL! Ez:.e Jusr/bin/bash

l fork()

Child

(new) Stack

exec* ()

A

(new) Heap

(new) Data
Code: fusr/bin/ls

Lecture Topics

e Processes and context switching

(@)

(@)

Creating new processes
m fork() and exec*()
Ending a process
m exit(), wait(), waitpid()
m Zombies

e Virtual Memory (VM)

(@)

O O O O

Overview and motivation

VM as a tool for caching

Address translation

VM as a tool for memory management
VM as a tool for memory protection

exit: Exiting a Process

e void exit(int status)
o Explicitly exits a process
m Status code: 0 = normal exit, nonzero = abnormal exit
e The return statement from main() also exits a process
o The return value is the status code

e Terminated processes still take up system resources
o Data structures maintained by the OS
o A process can’t clean up all of its own resources when it exits, so whose
responsibility is it?

Zombies

e A terminated process that is still consuming resources is called a zombie

e Parent needs to reap its zombie children (i.e. clean up its resources)
o Parent is given exit status information, then transfers control to the OS to delete
zombie process

e What if the parent exits before reaping the child?

o Orphaned child is reaped by in1it process (process 1)
m Note: on recent Linux systems, init has been .

renamed to systemd

wait: Synchronizing with Children

® int wait(intx child_status)
o Suspends the current process until one of its children terminates
m Reaps that child, then returns its PID
o Ifchild_status != NULL, thenthe xchild_status value indicates why the
child process terminated
m If NULL, that means the status was ignored
m Special macros for interpreting this status — see man wait(2)
e Note: If parent process has multiple children, wait will return when any of the

children terminates
o waitpid can be used to wait on a specific child process

wait Example

void fork_wait() {
int child_status;

if (fork() == 0) {
(yNi printf("HC: hello from child\n");
exit(0);
} else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

p

)
printf("Bye\n");

sy

exi

t

> :’
printf 1
1
1
1
1
“HP” ; “cT” “Bye”
>@ >@ >@ -
fork printf ?NLC-".a)-';—t printf printf

Feasible output:
HC

HP

CT

Bye

Infeasible output:
HP

CT \
Bye gas
HC L/ et

XS VY. % oft

124 H C“

wait Example 2: Zombies

void fork7() {
if (fork() == 0) {
/* Child x/
printf("Terminating Child, PID = %d\n",
getpid());
exit(0);
} else {
/* Parent x/
printf("Running Parent, PID = %d\n",
getpid());
while (1); /* Infinite loop */
} g} ‘
} S \.wwb o= ?”‘m‘\— (A9, (AM\X, rﬂ-\l\"\" oW

o Qrov, wouk g —
rb“\"&

Need to kill parent for
init to reap the child

Zombie child is still
there

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttypd 00:00:00 ps
linux> kill 6639
Terminated

PID TTY
6585 ttyp9 00:

6642 ttyp9 oF

wait Example 3: Non-terminating Child

void fork8() {
if (fork() == 0) {
/* Child x/

printf("Running Child, PID = %

getpid());
while (1); /* Infinite loop */
} else {
/* Parent x/
printf("Running Parent, PID =

d\nll,

%d\n",

getpid());
exit(0);

Child still active
after parent
terminates

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
:00:00 tcsh
:00:06 forks
:00:00 ps

6585 ttyp9
6676 ttyp9

6677 ttyp9
linux> kill
linux> ps
PID TTY
6585 ttypQ
6678 ttyp

Must explicitly kill the
child, or it will run forever.

Lecture Topics 4 R

Warning: Virtual memory is pretty

e Processes and context switching complex, but crucial for

o Creating new processes understanding how processes work
and for debugging performance

m fork() and exec*() \ y
o Ending a process
m exit(), wait(), waitpid()
m Zombies
e Virtual Memory (VM*)
o Overview and motivation
VM as a tool for caching
Address translation
VM as a tool for memory management
VM as a tool for memory protection

*Not to be confused with Virtual Machine, which is a whole other thing

O O O O

Memory as we know it so far... is virtual!

OxF...F

e Programs refer to virtual memory addresses
o System provides private addresses for each process
e Allocation: compiler and run-time system
o Where different program objects should be stored
o All allocation within single virtual address space
e But...
o We probably don’t have 2% bytes of physical memory
o We definitely don’t have 2% bytes of physical memory for every

process
o Processes should not interfere with each other
m Except for specific cases where they want to share code

or data

0x0...0

Problem 1: How does everything fit?

64-bit virtual addresses can address 18 exabytes
(18,446,744,073,709,551,616 bytes)

Physical main memory offers a few
gigabytes
(e.g., 8,589,934,592 bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence
compared to the virtual address space.)

Problem 2: Memory Management

We have multiple

processes:
Process 1
Process 2
Process 3

Process n

X

Each process has:

Stack
Heap
Static Data
Literals
Code

What goes
where?

Physical Memory

Problem 3: How to protect data?

Physical main memory

| What if two running programs both use the same
Process i > address in their code?
Process 3 We want to make sure processes don’t access

the same physical memory locations.

Problem 4: How to share data?

Physical main memory

... Except sometimes we do want them to share

ProceSS l \ memory!

/ e Inter-process communication
Process | e Shared code

e eftc.

How can we solve these problems?

e “Any problem in computer science can be solved by adding another level of
Indirection.” — David Wheeler, inventor of the subroutine

Ve we vrorl s p1
o b e “"""S“ﬂ%. \ thing
Without indirection: p2
O\Ao-\éb «\\ —
5 eo(u"iq-s;_\ p3 > thlng
p1
With indirection: / thing
p2
ety N
\ ?atlﬁl"'l- N new
p3 thing

Indirection

e The ability to reference something using a name, reference, or container
instead of the value itself.
o A flexible mapping between a name and a thing allows changing the thing without
notifying holders of the name.
o Adds some work (now have to look up 2 things instead of 1)
o But don’t have to track all uses of name/address (single source!)

e Examples:

o Phone system: cell phone number portability
o Domain Name Service (DNS): translation from name to IP address
o Call centers: route calls to available operators, etc.

Indirection in Virtual Memory

Virtual
Memory

Process 1

[11

Process n

Mapping

Physical
Memory

=

Each process gets its
own private address
Space
o Translates to some
location in physical
memory
Solves previous

problems!

Mapping

e Avirtual address (VA) can be mapped to either physical memory (RAM) or
on disk
o Unused VAs may not have a mapping
o VAs from different processes may (or may not) map to the same location in
memory/disk

Process 1’s Virtual
Address Space Physical
Memory
Process 2’s Virtual Disk
Address Space

“Swap Space”

Address Spaces

e Virtual Address Space: Set of N = 2" virtual addresses
o {0,1, ..., N-1}
o Corresponds to word size (so in x86-64, n = 64)
e Physical Address Space: Set of M = 2™ physical addresses
o {0,1, ..., M-1}
o Address length m depends on hardware

e Every byte in main memory has:
o One physical address (PA)
o Zero, one, or more virtual addresses (VAS)

Review Questions

1.0n a 64-bit machine currently running 8 procl’e_sgg;bfw much virtual memory is
R

there? ZWG ‘...r gﬂtﬁb‘% X S’qm%uﬁ, -
N

2. True or False: A 32-bit machine with 8 GiB of RAM installed would never use all
ofit (intheory). __hwp i Tz e gugies) wmaseny
vw.)mcg Q“Qﬂws%

OW\B Mba\" Cor 2= Qﬂﬁﬂa‘)v&‘a\. }fo—\—gr(

/

VM and the Memory Hierarchy

e Think of memory (virtual or physical) as an array of bytes, now split into
pages
o Pages aligned (size is P = 2p bytes), similar to cache blocks
o Each virtual page can be stored in any physical page (no fragmentation!)
e Pages of virtual memory are usually stored in physical memory, but spill to
disk when we run out of space
o Kind of like a cache! Process 1s Virtual

Address Space

Physical
Memory

Process 2’s Virtual

Address Space
“Swap Space”

Memory Hierarchy: Core 2 Duo

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
| |
f ~am V! ~8 GB ! ~500 GB
L2 Mai a
L1 alin
unified D | S k

D I'Cache Memory

, cache

" 32KB AT
L1 d

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)

33x 10,000x

Virtual Memory Design Consequences

e Large page size: typically 4-8 KiB or 2-4 MiB
o Can be up to 1 GiB (for “Big Data” apps on big computers)
o Much larger than cache blocks

e Fully associative
o Any virtual page can be placed in any physical page

e Highly sophisticated, expensive replacement algorithms in OS
o Too complicated and open-ended to be implemented in hardware

e Write-back rather than write-through
o Really don’t want to write to disk every time we modify memory
o Some things may never end up on disk (e.g., stack for short-lived process)

Why does VM work on RAM/disk?

Avoids disk accesses because of locality
o Same reasonthat L1 /L2 /L3 caches work

The set of virtual pages that a program is “actively” accessing at any point in
time is called its working set

o If (working set of one process < physical memory):
m Good performance for one process (after compulsory misses)

o If (working sets of all processes > physical memory):
m Thrashing: Performance meltdown where pages are swapped between
memory and disk continuously

This is why your computer can feel faster when you add RAM

Summary

e fork makes two copies of the same process (parent & child)
o Returns different values to the two processes
e exec* replaces current process from file (new program)
e exitorreturnfrommaintoenda process
e wait orwaitpid used to synchronize parent/child execution and to reap child

e Virtual memory provides:
o Ability to use limited memory (RAM) across multiple processes
o lllusion of contiguous virtual address space for each process
o Protection and sharing amongst processes

	Slide 1: Processes II & Virtual Memory I
	Slide 2: Administrivia
	Slide 3: Lecture Topics
	Slide 4: fork Example
	Slide 5: Modeling fork with Process Graphs
	Slide 6: fork Example: Possible Output
	Slide 7: Polling Question
	Slide 8: Fork-Exec
	Slide 9: exec-ing a Program
	Slide 10: exec-ing a Program (pt 2)
	Slide 11: exec-ing a Program (pt 3)
	Slide 12: Lecture Topics
	Slide 13: exit: Exiting a Process
	Slide 14: Zombies
	Slide 15: wait: Synchronizing with Children
	Slide 16: wait Example
	Slide 17: wait Example 2: Zombies
	Slide 18: wait Example 3: Non-terminating Child
	Slide 19: Lecture Topics
	Slide 20: Memory as we know it so far… is virtual!
	Slide 21: Problem 1: How does everything fit?
	Slide 22: Problem 2: Memory Management
	Slide 23: Problem 3: How to protect data?
	Slide 24: How can we solve these problems?
	Slide 25: Indirection
	Slide 26: Indirection in Virtual Memory
	Slide 27: Mapping
	Slide 28: Address Spaces
	Slide 29: Review Questions
	Slide 30: VM and the Memory Hierarchy
	Slide 31: Memory Hierarchy: Core 2 Duo
	Slide 32: Virtual Memory Design Consequences
	Slide 33: Why does VM work on RAM/disk?
	Slide 34: Summary

