
System Control Flow & Processes I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today

○ HW 19 due (11:59pm)

● Wednesday, 5/7

○ RD 22 due (1pm)

○ HW 20 due (11:59pm)

○ Lab 4 due (11:59pm)

● Friday, 5/9

○ RD 23 due (1pm)

○ HW 21 due (11:59pm)

● Quiz 3 released on Monday, 5/12

○ Due Friday, 5/16

2

Topic Group 3: Scale & Coherence

● How do we make memory

accesses faster?

● How do programs manage large

amounts of memory?

○ How can we allocate memory

dynamically (i.e. at runtime)

● How does your computer run

multiple programs at once?

3

Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

4

Control Flow

● So far: we’ve seen how the flow of control changes as a single program

executes, within that program

● Reality: multiple programs running concurrently

○ How does control flow across the many components of the system?

○ In particular: We usually have more programs running than CPUs…

● Exceptional control flow is basic mechanism used for:

○ Transferring control between processes and OS

○ Handling I/O and virtual memory within the OS

○ Implementing multi-process apps like shells and web servers

○ Implementing concurrency

5

Control Flow (pt 2)

● Processors only do one thing:
○ From startup to shutdown, CPU simply reads and executes (interprets) a

sequence of instructions, one at a time

○ This sequence is the CPU’s control flow

6

Altering Control Flow

● Up to now, two ways to change control flow:
○ Jumps (conditional and unconditional)

○ Call and return

○ Both react to changes in program state

Before, we were only thinking about

what happens within a program.

Now, we have to think about what

happens outside a program!

● Processor also needs to react to changes in system state:

○ Unix/Linux user hits “Ctrl-C” on their keyboard

○ User clicks on a different application’s window on the screen

○ Data arrives from a disk or a network adapter

○ Instruction divides by zero

○ System timer expires (important later!)

7

Exceptional Control Flow Note: these are unrelated to

Java’s exceptions

Exists at all levels of a computer system

● Low-level mechanisms:

○ Exceptions

■ Change in processor’s control flow in response to a system event (i.e.,

change in system state, user-generated interrupt)

■ Implemented using a combination of hardware and OS

● Higher-level mechanisms:

○ Process context switch

■ Implemented by OS software and hardware timer

○ Signals

■ Implemented by OS software

8

Exceptions Note: these are unrelated to

Java’s exceptions

● Transfer of control to the OS kernel in response to some event

○ Kernel is the operating system code that lives in memory (very VIP!)

● How does the system know where to jump to in the OS?

9

Exception Table This is extra (non-testable)
material

● A jump table for exceptions (also called the Interrupt Vector Table)

○ Each type of event has a unique exception number k

○ k = index in the exception table, which points to the corresponding exception

handler

10

Exception Table Excerpt This is extra (non-testable)
material

Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS defined Interrupt or Trap

11

Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

12

Asynchronous Exceptions

● Interrupts: caused by events external to the processor

○ Indicated by setting the processor’s interrupt pin(s) (wire into CPU)

○ After interrupt handler runs, the handler returns to “next” instruction

● Examples:

○ I/O interrupts

■ Hitting Ctrl-C on the keyboard

■ Clicking a mouse button or tapping a touchscreen

■ Arrival of a packet from a network

■ Arrival of data from a disk

○ Timer interrupt

■ Every few milliseconds, an external timer chip triggers an interrupt

■ Used by the OS kernel to take back control from user programs

13

Synchronous Exceptions

● Caused by events that occur as a result of executing an instruction:

○ Traps: Intentional (why is it called this?)

■ Transfer control to OS to perform some function

■ Ex: system calls, breakpoint traps, special instructions

■ After handler runs, returns control to “next” instruction

○ Faults: Unintentional, but possibly recoverable

■ Ex: page fault, segment protection faults, integer divide-by-zero exceptions

■ Either re-executes failing (“current”) instruction, or aborts

○ Aborts: Unintentional and unrecoverable

■ Ex: parity error, machine check (hardware failure detected)

■ Abort program

14

System Calls

● Each system call has a unique ID number

○ Note: this is separate from the exception number!

● Examples on Linux for x86-64: Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute program

60 _exit Terminate process

62 kill Send signal to process

15

Trap Example: Opening File
● User calls open(filename, options)function in C

○ Calls __open function, which invokes system call instruction syscall

__open:
...
mov $0x2,%eax # open is syscall 2
syscall # return value in %rax
cmp $0xfffffffffffff001,%rax # check for error
...
retq

● Syscall number stored in %rax (weird)

○ Other arguments in regular arg registers

● Check return value for negative errno

16

Fault Example: Page Fault (future lecture topic!)

● Program writes to some location

○ That portion (page) of user’s memory is currently on disk and not in memory

movl $0xd, 0x8049d10

● Page fault handler loads

page into memory

● Returns to faulting

instruction: mov is executed

again!

○ Successful on second try

17

Abort Example: Invalid Memory Reference

movl $0xd, 0x00000000

● Page fault handler detects

invalid address

● Sends SIGSEGV signal to

user process

● Process exits with

“segmentation fault”

18

Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

19

Early Operating Systems

● Before there were operating systems, there was computer operator

○ Person who loaded in punch cards to begin running a program

● Operating Systems were developed to

replace the human operator

● Eventually, magnetic tape replaced punch

cards, allowing for multiprocessing

○ Programming by typing into machine

This is part of a larger trend of computers

being used to automate labor.

20

The First Computers

● Computer: “a person who computes”

○ Doing calculations by hand quickly for aeronautics, warfare, science, etc.

Human Computers at NACA Credit: NASA The women of Bletchley Park, Credit: BBC

21

Legacy of Computing

● Computers augment the abilities of humans

○ Makes the labor of boring, repetitive work more widely available

○ Highly valued, but generally exclusively available

● Computers automate the boring, repetitive work

○ Culturally, we are conditioned to believe that such work should be automated

○ Has consistently led to job elimination

■ e.g., ENIAC’s calculation speed could displace 2,400 human computers

● Both narratives are simultaneously true, even today!

○ Underlying goal is efficiency of labor (usually for profit)

○ Take CSE480: Computer Ethics Seminar & CSE478: Autonomous Robotics for

more

22

Legacy of Computing (pt 2)

● Where are we now?

○ AI being used to automate all kinds of jobs:

■ Elimination of customer service jobs, especially in developing nations.

■ Not just affecting “blue-collar” jobs, but high-paying ones too.

■ Creative jobs too? Depends on whom you ask.

23

https://wapo.st/4azzRza
https://wapo.st/4aC0T9p
https://www.forbes.com/sites/cmo/2024/01/17/why-ai-cant-take-away-creative-jobs/
https://www.nytimes.com/2023/08/24/upshot/artificial-intelligence-jobs.html

Quick Discussion

● (On Ed) What jobs have you heard about that might be in imminent danger of

automation? Who tends to hold these jobs?

Musicians’ Strike (1940s) Writers’ Strike (2023)

24

Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

25

What is a Process?

26

What is a Process? (pt 2)

● A process is an instance of a running program

○ One of the most profound ideas in computer science!

● Another abstraction in our computer

○ Provided by the OS

■ Uses a data structure to keep track of each process (ID,

open files, etc.)

○ Maintains the interface between the program and the underlying

hardware

● What is the difference between:

○ A processor? A program? A process?

27

Processes

● Provides each program with two key abstractions:
○ Logical control flow

■ Each program seems to have exclusive use of the CPU

■ Provided by a kernel mechanism called context switching

○ Private address space

■ Each program seems to have exclusive use of memory

■ Provided by a kernel mechanism called virtual memory

● What do processes have to do with exceptional control flow?

○ Exceptional control flow is the mechanism the OS uses to enable multiple

processes to run on the same system

28

Processes (pt 2)

29

Processes (pt 3)

30

Multiprocessing: the Illusion

. . .

● Computer runs many processes simultaneously
○ Applications for one or more users

■ Web browsers, email clients, editors, …

● Background tasks
○ Monitoring network & I/O devices

31

Multiprocessing: the Reality

● Single CPU executes multiple processes concurrently

○ Interleaves process executions, runs one at a time

○ Address space managed by virtual memory system (we’ll get to it!)

○ Execution context (register values, stack, etc.) saved in memory

when process isn’t running

32

Context Switch steps

1. Save current registers, etc. in memory

33

Context Switch steps (pt 2)

1. Save current registers in memory

2. Schedule next process for execution

34

Context Switch steps (pt 3)

1. Save current registers, etc. in memory

2. Schedule next process for execution

3. Load saved registers and switch

address space

35

Multiprocessing: the (Modern) Reality

● Multicore processors

○ Multiple CPUs (“cores”) on one chip

○ Share memory (and some caches)

○ Each can execute a separate process

■ Still constantly switching

36

Context Switching Assume only one CPU core

● Processes are managed by a shared chunk of OS code called the kernel

○ The kernel is not a separate process, but rather runs as part of each user process

● In x86-64 Linux:

○ Same address in each process’

kernel memory refers to the same

shared memory location*

*sort of, the story here became more

complicated after Meltdown and Spectre…

37

Context Switching (pt 2) Assume only one CPU core

● Context switch passes control flow from one process to another and is

performed using kernel code

● Can happen for a variety of reasons (process terminated, timer interrupt, etc.)

38

Concurrency Assume only one CPU core

● Two processes are concurrent if their instruction executions/flows overlap in

time

○ i.e. one starts before the other has completely finished executing

○ Otherwise, they are sequential

● Example:

○ Concurrent: A&B, A&C

○ Sequential: B&C

39

User’s View of Concurrency Assume only one CPU core

● Control flows for concurrent processes are physically

disjoint in time

○ CPU executes instructions for one process at a time

● However, we can think of them as if they’re running at the

same time, in parallel

40

Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

41

Creating New Processes and Programs

42

Creating New Processes and Programs (pt 2)

43

Creating New Processes and Programs (pt 3)

44

Creating New Processes and Programs

● Fork-exec model (Linux)

○ fork() creates a copy of the current process

○ exec*() replaces the current process’ code and address space with the code for

a different program

■ Family: execv, execl, execve, execle, execvp, execlp

○ Both fork() and exec*() are system calls

● Other system calls for process management:

○ getpid()

○ exit()

○ wait(), waitpid()

45

fork: Creating New Processes

● pid_t fork()

○ Creates a new “child” process that is a copy of the calling “parent” process, including all

state (memory, registers, etc.)

○ Returns 0 to the child process

○ Returns child’s process ID (PID) to the parent process

● fork is unique (and often confusing) because it is called once but returns “twice”

● Child is almost identical to the parent

○ Gets an identical (but separate) copy of parent’s

address space

○ Register %rax is 0 on return

○ Has a different PID than the parent

46

fork Example

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

● Child has the same memory and register values as the parent (except %rax)

○ This includes the code in memory and %rip, so child will start executing the same

code as parent, right after fork() returns

● Can use the return values from fork() to distinguish between parent and

child

47

Why have fork and exec?

● Why make a copy of the parent’s data if we’re just going to throw it away in

exec()?

○ Easier to implement

○ Useful if you want the new process to execute the same code

● Not all systems do it this way!

○ Windows uses spawn

○ Optional reading: “A Fork in the Road”

48

Summary: Exceptional Control Flow

● Exceptional control flow allows the OS to interrupt a currently running

program

○ Interrupts are asynchronous (i.e. they come from outside the program)

○ Traps are synchronous, purposefully invoked by the user application

■ Includes system calls: OS services that user programs can invoke

○ Faults are synchronous, unintentional, but possibly recoverable

○ Aborts are synchronous and occur in response to unrecoverable errors

49

Summary: Processes

● A process is a single instance of a running program

○ Keeps track of the context the program is being run in (register values, memory

state, etc.)

● A computer can have multiple concurrent processes, but can only execute

one at a time

○ Performs a context switch to move between processes

● Processes are created using the fork system call

○ Creates a copy of the parent process

○ The exec system call throws out the old context and starts running a new

program

50

	Slide 1: System Control Flow & Processes I
	Slide 2: Administrivia
	Slide 3: Topic Group 3: Scale & Coherence
	Slide 4: Lecture Topics
	Slide 5: Control Flow
	Slide 6: Control Flow (pt 2)
	Slide 7: Altering Control Flow
	Slide 8: Exceptional Control Flow
	Slide 9: Exceptions
	Slide 10: Exception Table
	Slide 11: Exception Table Excerpt
	Slide 12: Lecture Topics
	Slide 13: Asynchronous Exceptions
	Slide 14: Synchronous Exceptions
	Slide 15: System Calls
	Slide 16: Trap Example: Opening File
	Slide 17: Fault Example: Page Fault (future lecture topic!)
	Slide 18: Abort Example: Invalid Memory Reference
	Slide 19: Lecture Topics
	Slide 20: Early Operating Systems
	Slide 21: The First Computers
	Slide 22: Legacy of Computing
	Slide 23: Legacy of Computing (pt 2)
	Slide 24: Quick Discussion
	Slide 25: Lecture Topics
	Slide 26: What is a Process?
	Slide 27: What is a Process? (pt 2)
	Slide 28: Processes
	Slide 29: Processes (pt 2)
	Slide 30: Processes (pt 3)
	Slide 31: Multiprocessing: the Illusion 🧙
	Slide 32: Multiprocessing: the Reality
	Slide 33: Context Switch steps
	Slide 34: Context Switch steps (pt 2)
	Slide 35: Context Switch steps (pt 3)
	Slide 36: Multiprocessing: the (Modern) Reality
	Slide 37: Context Switching
	Slide 38: Context Switching (pt 2)
	Slide 39: Concurrency
	Slide 40: User’s View of Concurrency
	Slide 41: Lecture Topics
	Slide 42: Creating New Processes and Programs
	Slide 43: Creating New Processes and Programs (pt 2)
	Slide 44: Creating New Processes and Programs (pt 3)
	Slide 45: Creating New Processes and Programs
	Slide 46: fork: Creating New Processes
	Slide 47: fork Example
	Slide 48: Why have fork and exec?
	Slide 49: Summary: Exceptional Control Flow
	Slide 50: Summary: Processes

