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Administrivia

● Today

○ HW 19 due (11:59pm)

● Wednesday, 5/7

○ RD 22 due (1pm)

○ HW 20 due (11:59pm)

○ Lab 4 due (11:59pm)

● Friday, 5/9

○ RD 23 due (1pm)

○ HW 21 due (11:59pm)

● Quiz 3 released on Monday, 5/12

○ Due Friday, 5/16

2



Topic Group 3: Scale & Coherence

● How do we make memory 

accesses faster?

● How do programs manage large 

amounts of memory?

○ How can we allocate memory 

dynamically (i.e. at runtime)

● How does your computer run 

multiple programs at once?
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Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

4



Control Flow

● So far: we’ve seen how the flow of control changes as a single program 

executes, within that program

● Reality: multiple programs running concurrently

○ How does control flow across the many components of the system?

○ In particular: We usually have more programs running than CPUs…

● Exceptional control flow is basic mechanism used for:

○ Transferring control between processes and OS

○ Handling I/O and virtual memory within the OS

○ Implementing multi-process apps like shells and web servers

○ Implementing concurrency
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Control Flow (pt 2)

● Processors only do one thing:
○ From startup to shutdown, CPU simply reads and executes (interprets) a 

sequence of instructions, one at a time

○ This sequence is the CPU’s control flow
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Altering Control Flow

● Up to now, two ways to change control flow:
○ Jumps (conditional and unconditional)

○ Call and return

○ Both react to changes in program state

Before, we were only thinking about 

what happens within a program. 

Now, we have to think about what 

happens outside a program!

● Processor also needs to react to changes in system state:

○ Unix/Linux user hits “Ctrl-C” on their keyboard

○ User clicks on a different application’s window on the screen

○ Data arrives from a disk or a network adapter

○ Instruction divides by zero

○ System timer expires (important later!)
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Exceptional Control Flow Note: these are unrelated to 

Java’s exceptions

Exists at all levels of a computer system

● Low-level mechanisms:

○ Exceptions

■ Change in processor’s control flow in response to a system event (i.e., 

change in system state, user-generated interrupt)

■ Implemented using a combination of hardware and OS

● Higher-level mechanisms:

○ Process context switch

■ Implemented by OS software and hardware timer

○ Signals

■ Implemented by OS software
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Exceptions Note: these are unrelated to 

Java’s exceptions

● Transfer of control to the OS kernel in response to some event

○ Kernel is the operating system code that lives in memory (very VIP!)

● How does the system know where to jump to in the OS?
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Exception Table This is extra (non-testable) 
material

● A jump table for exceptions (also called the Interrupt Vector Table)

○ Each type of event has a unique exception number k

○ k = index in the exception table, which points to the corresponding exception 

handler
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Exception Table Excerpt This is extra (non-testable) 
material

Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS defined Interrupt or Trap
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Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies

12



Asynchronous Exceptions

● Interrupts: caused by events external to the processor

○ Indicated by setting the processor’s interrupt pin(s) (wire into CPU)

○ After interrupt handler runs, the handler returns to “next” instruction

● Examples:

○ I/O interrupts

■ Hitting Ctrl-C on the keyboard

■ Clicking a mouse button or tapping a touchscreen

■ Arrival of a packet from a network

■ Arrival of data from a disk

○ Timer interrupt

■ Every few milliseconds, an external timer chip triggers an interrupt

■ Used by the OS kernel to take back control from user programs
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Synchronous Exceptions

● Caused by events that occur as a result of executing an instruction:

○ Traps: Intentional (why is it called this?)

■ Transfer control to OS to perform some function

■ Ex: system calls, breakpoint traps, special instructions

■ After handler runs, returns control to “next” instruction

○ Faults: Unintentional, but possibly recoverable

■ Ex: page fault, segment protection faults, integer divide-by-zero exceptions

■ Either re-executes failing (“current”) instruction, or aborts

○ Aborts: Unintentional and unrecoverable

■ Ex: parity error, machine check (hardware failure detected)

■ Abort program
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System Calls

● Each system call has a unique ID number

○ Note: this is separate from the exception number!

● Examples on Linux for x86-64: Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute program

60 _exit Terminate process

62 kill Send signal to process
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Trap Example: Opening File
● User calls open(filename, options)function in C

○ Calls __open function, which invokes system call instruction syscall

__open:
...
mov $0x2,%eax # open is syscall 2
syscall # return value in %rax
cmp $0xfffffffffffff001,%rax # check for error
...
retq

● Syscall number stored in %rax (weird)

○ Other arguments in regular arg registers

● Check return value for negative errno
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Fault Example: Page Fault (future lecture topic!)

● Program writes to some location

○ That portion (page) of user’s memory is currently on disk and not in memory

movl $0xd, 0x8049d10

● Page fault handler loads 

page into memory

● Returns to faulting 

instruction: mov is executed 

again!

○ Successful on second try
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Abort Example: Invalid Memory Reference

movl $0xd, 0x00000000

● Page fault handler detects 

invalid address

● Sends SIGSEGV signal to 

user process

● Process exits with 

“segmentation fault”
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Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies
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Early Operating Systems

● Before there were operating systems, there was computer operator

○ Person who loaded in punch cards to begin running a program

● Operating Systems were developed to 

replace the human operator

● Eventually, magnetic tape replaced punch 

cards, allowing for multiprocessing

○ Programming by typing into machine

This is part of a larger trend of computers 

being used to automate labor.
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The First Computers

● Computer: “a person who computes”

○ Doing calculations by hand quickly for aeronautics, warfare, science, etc.

Human Computers at NACA Credit: NASA The women of Bletchley Park, Credit: BBC
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Legacy of Computing

● Computers augment the abilities of humans

○ Makes the labor of boring, repetitive work more widely available

○ Highly valued, but generally exclusively available

● Computers automate the boring, repetitive work

○ Culturally, we are conditioned to believe that such work should be automated

○ Has consistently led to job elimination

■ e.g., ENIAC’s calculation speed could displace 2,400 human computers

● Both narratives are simultaneously true, even today!

○ Underlying goal is efficiency of labor (usually for profit)

○ Take CSE480: Computer Ethics Seminar & CSE478: Autonomous Robotics for 

more
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Legacy of Computing (pt 2)

● Where are we now?

○ AI being used to automate all kinds of jobs:

■ Elimination of customer service jobs, especially in developing nations.

■ Not just affecting “blue-collar” jobs, but high-paying ones too.

■ Creative jobs too? Depends on whom you ask.
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Quick Discussion

● (On Ed) What jobs have you heard about that might be in imminent danger of 

automation? Who tends to hold these jobs?

Musicians’ Strike (1940s) Writers’ Strike (2023)
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Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies
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What is a Process?
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What is a Process? (pt 2)

● A process is an instance of a running program

○ One of the most profound ideas in computer science!

● Another abstraction in our computer

○ Provided by the OS

■ Uses a data structure to keep track of each process (ID, 

open files, etc.)

○ Maintains the interface between the program and the underlying 

hardware

● What is the difference between:

○ A processor? A program? A process? 
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Processes

● Provides each program with two key abstractions:
○ Logical control flow

■ Each program seems to have exclusive use of the CPU

■ Provided by a kernel mechanism called context switching

○ Private address space

■ Each program seems to have exclusive use of memory

■ Provided by a kernel mechanism called virtual memory

● What do processes have to do with exceptional control flow?

○ Exceptional control flow is the mechanism the OS uses to enable multiple 

processes to run on the same system
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Processes (pt 2)
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Processes (pt 3)
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Multiprocessing: the Illusion 

. . .

● Computer runs many processes simultaneously
○ Applications for one or more users

■ Web browsers, email clients, editors, …

● Background tasks
○ Monitoring network & I/O devices
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Multiprocessing: the Reality

● Single CPU executes multiple processes concurrently

○ Interleaves process executions, runs one at a time

○ Address space managed by virtual memory system (we’ll get to it!)

○ Execution context (register values, stack, etc.) saved in memory 

when process isn’t running
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Context Switch steps

1. Save current registers, etc. in memory
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Context Switch steps (pt 2)

1. Save current registers in memory

2. Schedule next process for execution
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Context Switch steps (pt 3)

1. Save current registers, etc. in memory

2. Schedule next process for execution

3. Load saved registers and switch 

address space
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Multiprocessing: the (Modern) Reality

● Multicore processors

○ Multiple CPUs (“cores”) on one chip

○ Share memory (and some caches)

○ Each can execute a separate process

■ Still constantly switching
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Context Switching Assume only one CPU core

● Processes are managed by a shared chunk of OS code called the kernel

○ The kernel is not a separate process, but rather runs as part of each user process

● In x86-64 Linux:

○ Same address in each process’ 

kernel memory refers to the same 

shared memory location*

*sort of, the story here became more 

complicated after Meltdown and Spectre…
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Context Switching (pt 2) Assume only one CPU core

● Context switch passes control flow from one process to another and is 

performed using kernel code

● Can happen for a variety of reasons (process terminated, timer interrupt, etc.)
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Concurrency Assume only one CPU core

● Two processes are concurrent if their instruction executions/flows overlap in 

time

○ i.e. one starts before the other has completely finished executing

○ Otherwise, they are sequential

● Example:

○ Concurrent: A&B, A&C

○ Sequential: B&C
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User’s View of Concurrency Assume only one CPU core

● Control flows for concurrent processes are physically 

disjoint in time

○ CPU executes instructions for one process at a time

● However, we can think of them as if they’re running at the 

same time, in parallel
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Lecture Topics

● System Control Flow
○ Control flow

○ Exceptional control flow

○ Asynchronous exceptions (interrupts)

○ Synchronous exceptions (traps & faults)

● OS History

● Processes and context switching
○ Creating new processes

■ fork() and exec*()

○ Ending a process

■ exit(), wait(), waitpid()

■ Zombies
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Creating New Processes and Programs
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Creating New Processes and Programs (pt 2)
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Creating New Processes and Programs (pt 3)
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Creating New Processes and Programs

● Fork-exec model (Linux)

○ fork() creates a copy of the current process

○ exec*() replaces the current process’ code and address space with the code for 

a different program

■ Family: execv, execl, execve, execle, execvp, execlp

○ Both fork() and exec*() are system calls

● Other system calls for process management:

○ getpid()

○ exit()

○ wait(), waitpid()
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fork: Creating New Processes

● pid_t fork()

○ Creates a new “child” process that is a copy of the calling “parent” process, including all 

state (memory, registers, etc.)

○ Returns 0 to the child process

○ Returns child’s process ID (PID) to the parent process

● fork is unique (and often confusing) because it is called once but returns “twice”

● Child is almost identical to the parent

○ Gets an identical (but separate) copy of parent’s 

address space

○ Register %rax is 0 on return

○ Has a different PID than the parent
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fork Example

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

● Child has the same memory and register values as the parent (except %rax)

○ This includes the code in memory and %rip, so child will start executing the same 

code as parent, right after fork() returns

● Can use the return values from fork() to distinguish between parent and 

child

47



Why have fork and exec?

● Why make a copy of the parent’s data if we’re just going to throw it away in 

exec()?

○ Easier to implement

○ Useful if you want the new process to execute the same code

● Not all systems do it this way!

○ Windows uses spawn

○ Optional reading: “A Fork in the Road”
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Summary: Exceptional Control Flow

● Exceptional control flow allows the OS to interrupt a currently running 

program

○ Interrupts are asynchronous (i.e. they come from outside the program)

○ Traps are synchronous, purposefully invoked by the user application

■ Includes system calls: OS services that user programs can invoke

○ Faults are synchronous, unintentional, but possibly recoverable

○ Aborts are synchronous and occur in response to unrecoverable errors
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Summary: Processes

● A process is a single instance of a running program

○ Keeps track of the context the program is being run in (register values, memory 

state, etc.)

● A computer can have multiple concurrent processes, but can only execute 

one at a time

○ Performs a context switch to move between processes

● Processes are created using the fork system call

○ Creates a copy of the parent process

○ The exec system call throws out the old context and starts running a new 

program
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