
Memory Allocation I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today:

○ Lab 5 released

■ Due Wednesday, 1/14

● Monday, 1/5

○ RD21 due (1pm)

○ HW19 due (11:59pm)

● Wednesday, 1/7

○ RD22 due (1pm)

○ HW20 due (11:59pm)

○ Lab4 due (11:59pm)

2

Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Splitting and coalescing

○ Explicit free lists (Lab 5)

● Implicit deallocation: garbage collection

3

Recap: Keeping track of free blocks

● Implicit Free List

○ Use pointer arithmetic to traverse through entire heap until we find a free bock

● Explicit Free List

○ Free block stores pointer to the next free block, forming a linked list

● Others not covered in this class

○ Segregated free lists (different lists for each object type), sorting blocks by size

4

Recap: Implicit Free Lists

● For each block, we need to store: size, is_allocated

○ Could use two works, but kinda wasteful…

● Recap: if size is a multiple of 2n, then lowest n bits of the size are always 0

■ Use the lowest bit of header word to store is_allocated flag

■ When reading size, mask this bit out

a = 1 if allocated,

0 if free

size = total block

size in bytes

payload for

allocated blocks

only

If the header value is h:

h = size | a

a = h & 1

size = h & ~1

5

Block format:

Implicit Free List Example

● Each block begins with a header containing size and the allocated flag

● Payload is 16B aligned

○ May require padding

● Extra “header” to mark the end of the heap: 0|1

○ Adds 8B of external fragmentation

● Sequence of blocks in heap (size|alloc): 16|0, 32|1, 64|0, 32|1

6

Implicit Free List: Finding a Free Block

● First fit: start from beginning, choose first free block that fits

p = heap_start;
while ((p < end) && // while not past the end of heap

((*p & 1) || (*p <= len))) { // while p allocated or too small
int size = p & ~1;
p += p, size; // Go to next block, (UNSCALED +)

} // p points to selected block or end

○ Can take linear time in total number of blocks

○ Can cause “splinters” at beginning of the heap

7

Implicit Free List: Finding a Free Block (pt 2)

● Next fit: like first fit, but search list starting from where previous search

finished

○ Often faster than first-fit, avoid scanning through as many allocated blocks

○ Some research suggests fragmentation is worse

● Best fit: search through all free blocks, choose the one that’s large enough

with fewest bytes left over

○ Usually helps fragmentation

○ Worse throughput, have to look through all blocks

8

Polling Question

● Which allocation strategy and requests remove

external fragmentation in this Heap? Note: B3 was

the last fulfilled request.

A) Best-fit:

malloc(50), malloc(50)

B) First-fit:

malloc(50), malloc(30)

C) Next-fit:

malloc(30), malloc(50)

D) Next-fit:

malloc(50), malloc(30)

9

Allocating a Free Block

● Easy with implicit free list, just set the allocated bit

● What if the block we choose is much larger than requested?

○ Split into two blocks

void split(ptr b, int bytes) { // bytes = desired block size
int newsize = ((bytes+15) >> 4) << 4; // round up to multiple of 16
int oldsize = *b; // Why not mask out low bit?
*b = newsize; // initially unallocated
if (newsize < oldsize)

*(b+newsize) = oldsize - newsize; // Set length in remaining
} // part of block (UNSCALED +)

Ex: malloc(16)

10

Freeing a Block

● Simplest implementation, just set allocated bit to false
○ This can lead to “false fragmentation”

Ex: free(p)

What happens if we call malloc(40)? Can’t find a free block!

● Solution: coalesce adjacent free blocks

11

Coalescing with Next block

void free(ptr p) { // p points to payload
ptr b = p – WORD; // b points to block header (UNSCALED -)
*b &= ~1; // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*next & 1) == 0) // if next block is not allocated,

*b += *next; // add its size to this block
}

● How do we coalesce with the preceding block, though?

12

Coalescing with Previous Block

● Keep a footer for each block

○ Copy of the header at the end of a block

○ Header + footer = boundary tags

● When coalescing, check footer immediately before current block in memory

○ If free, coalesce blocks

13

Coalescing

Case 1: Case 2:

14

Coalescing (pt 2)

Case 3: Case 4:

15

Implicit Free List Review Questions
● When coalescing free blocks, how many neighboring blocks do we need to

check on either side? Why?

● If I want to check the size of the nth block forward from the current block, how

many memory accesses do I need to make?

16

Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Splitting and coalescing

○ Explicit free lists (Lab 5)

● Implicit deallocation: garbage collection

17

Explicit Free Lists

● Create a linked list of free blocks only, rather than having to search through

all blocks

○ Since only free blocks are in the list, can use the space that would be the payload

for an allocated block

○ Still need boundary tags for coalescing

Allocated block:

(same as implicit

free list)

Free block:

18

Doubly-Linked Lists

● Linear
○ Root pointer points to first node

○ First node’s prev = NULL

○ Last node’s next = NULL

○ Better for first-fit, best-fit

● Circular

○ Still need root pointer to tell you when to start

○ First and last node connected (no NULL pointers)

○ Better for next-fit, best-fit

19

Explicit Free Lists (pt 2)

● Logically: doubly-linked list

● Physically: blocks can be in any order

○ Free list ordering may not correlate to order in memory

20

Allocating From Explicit Free Lists

Note: diagram is not

realistic

● Boundary tags

omitted

● In reality, all pointers

would point to the

head of the block

21

Allocating From Explicit Free Lists (pt 2)

22

Freeing With Explicit Free Lists

● Insertion policy: when freeing block, where in the free list should it go?

○ FIFO: first-in, first-out

■ Insert new block at the head of the free list

■ Pros: simple. Insert blocks in constant time

■ Cons: research suggests worse fragmentation

○ Address-ordered policy

■ Insert block so that free list is in address order

■ Pros: research suggest less fragmentation

■ Cons: Insert blocks in linear time

Lab5 uses

FIFO

23

Coalescing With Explicit Free Lists

● Same cases as before

● Neighboring free blocks are already part of the free list

1. Remove neighboring block(s) from free list

2. Merge into a single, larger free block

3. Add new block to the free list

● How do we know if a neighboring block is free?

24

Freeing Blocks with LIFO Policy (Case 1)

● No coalescing

● Newly freed block

becomes list head

○ Old head

becomes its next

25

Freeing Blocks with LIFO Policy (Case 2)

● Coalesce with

following block

○ Following block

gets removed

from the list

● Newly made block

becomes list head

26

Freeing Blocks with LIFO Policy (Case 3)

● Coalesce with

preceding block

○ Preceding block

gets removed

from the list

● Newly made block

becomes list head

27

Freeing Blocks with LIFO Policy (Case 4)

● Coalesce with both

neighbors

○ Both neighbors

get removed from

the list

● Newly freed block

becomes list head

28

Do we always need boundary tags?

● Lab 5 suggests no… why not? (Hint: when do we use boundary tags?)

● We have room for more flags in our header!

○ Store another flag: preceding_allocated

○ If preceding block is allocated, don’t coalesce with it

Allocated

block

Free

block

29

Explicit Free List Block Size

● Requirements for allocated blocks

○ Header (1 word)

○ Payload (1+ words)

○ Minimum size = 2 words

● Requirements for free blocks

○ Header (1 word)

○ Next pointer (1 word)

○ Prev pointer (1 word)

○ Footer (1 word)

○ Minimum size = 4 words

30

Explicit List Block Size (pt 2)

● Problem: what if we allocate a very small block?

○ When block is freed, we won’t have room for the

necessary fields

● Solution: never allocate a block smaller than

the minimum free block size

○ Add padding to the end of allocated blocks

○ Don’t split if resulting free block is too small

31

Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Splitting and coalescing

○ Explicit free lists (Lab 5)

● Implicit deallocation: garbage collection

32

Wouldn’t it be nice…

● If we never had to free memory?

● Do you free objects in Java?

○ Reminder: implicit allocator

33

Garbage Collection void foo() {
int* p = (int*) malloc(128);
return; // p block is now garbage!

}

● Automatic reclamation of heap-allocated storage. Application never frees

memory!

● Common in functional languages, scripting languages, and most modern

object-oriented languages

○ Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

● Variants (“conservative” garbage collectors) exist for C and C++

○ However, cannot necessarily collect all garbage

34

Garbage Collection (pt 2)

● How does the memory allocator know when memory can be freed?I

○ We cannot know what pieces of data are going to be used in the future

○ But, we can tell that certain blocks cannot be used if they are unreachable (via

pointers in registers/stack/globals)

● If a program does not have any pointers to a block in the heap, then we know

it can be cleaned up

○ Memory allocator needs to know what is a pointer and what is not – how can it do

this?

■ Sometimes with help from the compiler

35

Memory as a Graph

● We view memory as a directed graph

○ Each allocated heap block is a node in the graph

○ Each pointer is an edge in the graph

○ Locations not in the heap that contain pointers into the heap are called root

nodes (e.g. registers, stack locations, global variables)

A node in the heap is

reachable if there is a

path from a root node to

that node.

Unreachable nodes are

garbage.

36

Garbage Collection: Mark and Sweep

1. For every root node (i.e. every pointer in global data, the stack, or registers):

a. If it is a pointer to a location on the heap, mark that heap block as visited

b. Recursively go through pointers and mark them all as visited

2. Go through the entire heap:

a. If a block is not marked, free it

37

Why doesn’t C have Garbage Collection

● People have tried! But it’s impossible to accurately predict what heap blocks

C has access to. Why?

○ C allows you to “hide” pointers by casting them to another type

● Existing C garbage collectors are “conservative” (i.e. they may not free some

blocks that could be freed)

○ Treat every variable as if it could be a pointer

○ Could cause memory leaks

38

Summary

● Three different policies for finding free blocks:

○ First-fit

○ Next-fit

○ Best-fit

● When free block is bigger than you need, split into two

● When freeing a block, coalesce with any adjacent free blocks in memory

○ Keep preceding_allocated bit in boundary tag

○ Store footer (copy of header) at the end of free blocks

39

Summary (pt 2)

● Implicit free lists

○ Simpler to implement (no pointers to keep track of)

○ Less fragmentation

○ Slower, have to search through entire heap for free block

● Explicit free lists

○ Faster, only have to search through free blocks (instead of all blocks)

■ Much faster when most of the heap is full

○ More complicated to implement

○ Minimum block size is larger (free blocks need pointers) -> more fragmentation

○ In practice, often used in conjunction with segregated free lists (see bonus slides)

■ Keep a separate list for different block sizes/objects

40

The following slides are about the SegList Allocator, for

those curious. You will NOT be expected to know this

material.

41

BONUS SLIDES

Segregated List (SegList) Allocators

● Each size class of blocks has its own free list

● Organized as an array of free lists

● Often have separate classes for each small size

● For larger sizes: One class for each two-power size

32

48-64

80-inf

16Size class
(in bytes)

SegList Allocator
● Have an array of free lists for various size classes

● To free a block:

○ Mark block as free

○ Coalesce (if needed)

○ Place on appropriate class list

SegList Advantages

● Higher throughput

○ Search is log time for power-of-two size classes

● Better memory utilization

○ First-fit search of seglist approximates a best-fit search of entire heap

○ Extreme case: Giving every block its own size class is no worse than best-fit search

of an explicit list

○ Don’t need to use space for block size for the fixed-size classes

44

	Slide 1: Memory Allocation I
	Slide 2: Administrivia
	Slide 3: Dynamic Memory Allocation
	Slide 4: Recap: Keeping track of free blocks
	Slide 5: Recap: Implicit Free Lists
	Slide 6: Implicit Free List Example
	Slide 7: Implicit Free List: Finding a Free Block
	Slide 8: Implicit Free List: Finding a Free Block (pt 2)
	Slide 9: Polling Question
	Slide 10: Allocating a Free Block
	Slide 11: Freeing a Block
	Slide 12: Coalescing with Next block
	Slide 13: Coalescing with Previous Block
	Slide 14: Coalescing
	Slide 15: Coalescing (pt 2)
	Slide 16: Implicit Free List Review Questions
	Slide 17: Dynamic Memory Allocation
	Slide 18: Explicit Free Lists
	Slide 19: Doubly-Linked Lists
	Slide 20: Explicit Free Lists (pt 2)
	Slide 21: Allocating From Explicit Free Lists
	Slide 22: Allocating From Explicit Free Lists (pt 2)
	Slide 23: Freeing With Explicit Free Lists
	Slide 24: Coalescing With Explicit Free Lists
	Slide 25: Freeing Blocks with LIFO Policy (Case 1)
	Slide 26: Freeing Blocks with LIFO Policy (Case 2)
	Slide 27: Freeing Blocks with LIFO Policy (Case 3)
	Slide 28: Freeing Blocks with LIFO Policy (Case 4)
	Slide 29: Do we always need boundary tags?
	Slide 30: Explicit Free List Block Size
	Slide 31: Explicit List Block Size (pt 2)
	Slide 32: Dynamic Memory Allocation
	Slide 33: Wouldn’t it be nice…
	Slide 34: Garbage Collection
	Slide 35: Garbage Collection (pt 2)
	Slide 36: Memory as a Graph
	Slide 37: Garbage Collection: Mark and Sweep
	Slide 38: Why doesn’t C have Garbage Collection
	Slide 39: Summary
	Slide 40: Summary (pt 2)
	Slide 41
	Slide 42: Segregated List (SegList) Allocators
	Slide 43: SegList Allocator
	Slide 44: SegList Advantages

