
Memory Allocation I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today

○ HW17 due (11:59pm)

● Friday, 8/2

○ RD20 due (1pm)

○ No HW :)

○ Lab 5 released (due 8/14)

● Monday, 8/5

○ RD21 due (1pm)

○ HW19 due (11:59pm)

2

Topic Group 3: Scale & Coherence

● How do we make memory

accesses faster?

● How do programs manage large

amounts of memory?

○ How can we allocate memory

dynamically (i.e. at runtime)

● How does your computer run

multiple programs at once?

3

Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Explicit free lists (Lab 5)

○ Splitting and coalescing

● Implicit deallocation: garbage collection

4

Multiple Ways to Store Program Data

● Static global data

○ Fixed size at compile-time

○ Lasts entire lifetime of the program

○ Accessible anywhere in the program

○ A portion is read-only (literals)

● Stack-allocated data

○ Local/temporary variables

■ Can be dynamically allocated (in some versions of C)

○ Known lifetime (deallocated when function returns)

● Dynamic (heap) data

○ Size and lifetime only known at runtime

int array[1024];
void foo(int n) {

int tmp;
int local_array[n];
int* dyn =

(int*)malloc(n*sizeof(int));
}

5

Dynamic Memory Allocation

● Programmers use dynamic memory allocators to acquire memory at

runtime

○ For data structures whose size or lifetime is known only at runtime

○ Stored in heap segment of memory

● Types of allocators

○ Implicit: language handles garbage collection, programmer only needs to

allocate the data

■ Ex: new in Java

○ Explicit: programmer needs to allocate and deallocate memory

■ Ex: malloc and free in C

6

Dynamic Memory Allocation (pt 2)

● Allocator organizes data into variable-sized

blocks, which can be allocated or free

● What happens when the heap runs out of

space?

○ Allocator asks the OS for more!

■ sbrk in Unix

7

Allocating Memory in C

● Need to #include <stdlib.h>

● void* malloc(size_t size)

○ Allocates a contiguous block of size bytes of uninitialized memory

○ size_t?! Simple typedef for an unsigned 8-byte integer

○ Returns a pointer to the beginning of the allocated block

■ Returns NULL if allocation failed, or size=0

● Pointer to an invalid address (represented as address 0)

○ Blocks typically aligned to 8 or 16 bytes

● Other versions:

○ calloc: initializes memory to 0

○ realloc: moves existing block to a larger one

8

Freeing Memory in C

● void free(void* p)

○ Releases block pointed to by p back to the pool of available memory

○ Pointer p must be the address originally returned by malloc/calloc/realloc

(i.e., beginning of the block)

○ Don’t call free on a block that has already been released!

■ Undefined behavior - can even introduce buffer overflow vulnerabilities!

○ No action occurs if you call free(NULL)

9

Best Practices for malloc and free

● malloc

○ Using sizeof makes code more portable (ints aren’t 4B on all machines…)

○ void* is implicitly cast, but explicitly casting will help you catch errors

○ Ex: int* ptr = (int*) malloc(n * sizeof(int));

● free

○ After calling free, set the pointer to NULL

■ Avoids double-free errors

○ Ex:
free(ptr);
ptr = NULL;

10

malloc and free Example

void foo(int n) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); // allocate space for array of n ints
if (p == NULL) { // check for allocation error

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) // initialize int array

p[i] = i;
free(p); // free p
p = NULL; // good practice to

set to NULL after free
}

11

malloc and free Interface

● Applications

○ Must never access memory not currently allocated

○ Must never free memory not currently allocated

■ Must only use free with previously malloc’ed blocks

● Allocators

○ Must respond immediately to malloc

○ Must allocate blocks from free memory

○ Must align blocks so they satisfy all alignment requirements

○ Can’t move the allocated blocks

12

Heap Management in C

● Likely very different from what you’re used to

● Programmer has to remember to free data when they’re done with it

○ Otherwise, causes a memory leak

● Requires keeping track of where your data is stored

● Bugs are common!

13

Find that Bug!

int* p = (int*)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

*p = i;

p++;

}

free(p);

14

Find that Bug! (pt 2)

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(N * sizeof(int));

// manipulate y

free(x);

15

Find that Bug! (pt 3)

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++) {

y[i] = x[i]++;

}

16

Find that Bug! (pt 4)

typedef struct L {

int val;

struct L* next;

} list; // linked list node

void main() {

list* head = (list*) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

17

Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Explicit free lists (Lab 5)

○ Splitting and coalescing

● Implicit deallocation: garbage collection

18

Notation

● We will draw memory divided into words

○ Each word is 64 bit = 8 bytes

○ Note: textbook and old videos still use 32-bit words

● Allocations will be aligned and in sizes that are a multiple of words

19

Memory Allocation Example

20

Performance Goals

● Given some sequence of malloc and free requests R0, R1, …, Rk, …, Rn-1,

maximize throughput and peak memory utilization

○ Often conflicting goals!

1) Throughput:

○ Number of completed requests per some unit of time

○ Example:

■ If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then

throughput is 1,000 operations/second

21

Performance Goals (pt 2)

● Aggregate Payload (Pk)
○ malloc(p) returns a payload of p bytes

○ After request Rk has completed, Pk = the sum of currently allocated payloads

● Current Heap Size (Hk)
○ Allocator can increase heap size using sbrk

■ Assume allocator cannot decrease heap size

2) Peak Memory Utilization (Uk):
○ Memory utilization = aggregate payload ÷ heap size

■ i.e., how much of our heap contains payload data

○ Uk = (maxi≤k Pk)÷Hk after k+1 requests

■ i.e., the maximum utilization at any point up through when Rk has completed

22

Fragmentation

● Recall fragmentation in structs

○ Used to preserve alignment

○ Internal: unused space inside of a struct (between fields)

○ External: unused space between struct instances (after fields)

● The heap is similar

○ Internal fragmentation: extra space inside an allocated block

○ External fragmentation: extra space between allocated blocks

23

Internal Fragmentation

● Additional space inside of an allocated block not used to store a payload

● Causes

○ Padding for alignment

○ Overhead of maintaining heap data structures

○ Explicit policy decisions (e.g., return a big block to satisfy a small request)

● Easy to measure, only depends on past requests

24

External Fragmentation

● Occurs when allocation/free pattern leaves “holes” between blocks

○ Can cause situations where there is enough aggregate heap space to satisfy a

request, but no single free block is large enough

● Don’t know what future requests

will be

○ Difficult to impossible to predict

if past placements will become

problematic

25

Polling Question

1. Which of these statements is FALSE?

A) Temporary arrays should not be allocated on the Heap

B) malloc returns an address of a block that is filled with mystery data

C) Peak memory utilization is a measure of both internal and external fragmentation

D) An allocation failure will cause your program to stop

26

Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Explicit free lists (Lab 5)

○ Splitting and coalescing

● Implicit deallocation: garbage collection

27

Implementation Issues

● How do we know how much memory to free given just a pointer?

● How do we keep track of the free blocks?

● How do we pick a block to use for allocation (when many might fit)?

● What do we do with the extra space when allocating a structure that is smaller

than the free block it is placed in?

● How do we reclaim free blocks?

28

Knowing how much to free

● Store the length of the block in a header

○ The word preceding the data

○ Also may contain other info, like whether the block is allocated

● Requires an extra word for every block

29

Keeping track of free blocks

● Implicit Free List

○ Use pointer arithmetic to traverse through entire heap until we find a free bock

● Explicit Free List

○ Free block stores pointer to the next free block, forming a linked list

● Others not covered in this class

○ Segregated free lists (different lists for each object type), sorting blocks by size

30

Implicit Free Lists

● For each block, we need to store: size, is_allocated

○ Could use two works, but kinda wasteful…

● Recap: if size is a multiple of 2n, then lowest n bits of the size are always 0

■ Use the lowest bit of header word to store is_allocated flag

■ When reading size, mask this bit out

a = 1 if allocated,

0 if free

size = total block

size in bytes

payload for

allocated blocks

only

If the header value is h:

h = size | a

a = h & 1

size = h & ~1

31

Block format:

Header Questions

● How many “flags” (boolean values) could we fit in our header if our allocator

uses 16-byte alignment?

● If we placed a new flag in the second least significant bit, write out a C

expression that will extract this new flag from the header!

32

Summary

● The heap is a segment of memory used to dynamically allocate data

○ Useful when we don’t know the size or when it can be freed until runtime

● Fragmentation is space in the heap that is not used to store payloads

○ Internal: inside of a block

○ External: between blocks

● C uses an explicit allocator, meaning the programmer decides when heap

data is freed

● Different heap implementations

○ Implicit free list: only store header and payload

○ Explicit free list: free blocks store pointers to the next free block (next lecture)

33

	Slide 1: Memory Allocation I
	Slide 2: Administrivia
	Slide 3: Topic Group 3: Scale & Coherence
	Slide 4: Dynamic Memory Allocation
	Slide 5: Multiple Ways to Store Program Data
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Allocation (pt 2)
	Slide 8: Allocating Memory in C
	Slide 9: Freeing Memory in C
	Slide 10: Best Practices for malloc and free
	Slide 11: malloc and free Example
	Slide 12: malloc and free Interface
	Slide 13: Heap Management in C
	Slide 14: Find that Bug!
	Slide 15: Find that Bug! (pt 2)
	Slide 16: Find that Bug! (pt 3)
	Slide 17: Find that Bug! (pt 4)
	Slide 18: Dynamic Memory Allocation
	Slide 19: Notation
	Slide 20: Memory Allocation Example
	Slide 21: Performance Goals
	Slide 22: Performance Goals (pt 2)
	Slide 23: Fragmentation
	Slide 24: Internal Fragmentation
	Slide 25: External Fragmentation
	Slide 26: Polling Question
	Slide 27: Dynamic Memory Allocation
	Slide 28: Implementation Issues
	Slide 29: Knowing how much to free
	Slide 30: Keeping track of free blocks
	Slide 31: Implicit Free Lists
	Slide 32: Header Questions
	Slide 33: Summary

