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Administrivia

● Today

○ HW17 due (11:59pm)

● Friday, 8/2

○ RD20 due (1pm)

○ No HW :)

○ Lab 5 released (due 8/14)

● Monday, 8/5

○ RD21 due (1pm)

○ HW19 due (11:59pm)
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Topic Group 3: Scale & Coherence

● How do we make memory 

accesses faster?

● How do programs manage large 

amounts of memory?

○ How can we allocate memory 

dynamically (i.e. at runtime)

● How does your computer run 

multiple programs at once?
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Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Explicit free lists (Lab 5)

○ Splitting and coalescing

● Implicit deallocation: garbage collection

4



Multiple Ways to Store Program Data

● Static global data

○ Fixed size at compile-time

○ Lasts entire lifetime of the program

○ Accessible anywhere in the program

○ A portion is read-only (literals)

● Stack-allocated data

○ Local/temporary variables

■ Can be dynamically allocated (in some versions of C)

○ Known lifetime (deallocated when function returns)

● Dynamic (heap) data

○ Size and lifetime only known at runtime

int array[1024];
void foo(int n) {

int tmp;
int local_array[n];
int* dyn =

(int*)malloc(n*sizeof(int));
}
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Dynamic Memory Allocation

● Programmers use dynamic memory allocators to acquire memory at 

runtime

○ For data structures whose size or lifetime is known only at runtime

○ Stored in heap segment of memory

● Types of allocators

○ Implicit: language handles garbage collection, programmer only needs to 

allocate the data

■ Ex: new in Java

○ Explicit: programmer needs to allocate and deallocate memory

■ Ex: malloc and free in C
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Dynamic Memory Allocation (pt 2)

● Allocator organizes data into variable-sized 

blocks, which can be allocated or free

● What happens when the heap runs out of 

space?

○ Allocator asks the OS for more!

■ sbrk in Unix
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Allocating Memory in C

● Need to #include <stdlib.h>

● void* malloc(size_t size)

○ Allocates a contiguous block of size bytes of uninitialized memory

○ size_t?! Simple typedef for an unsigned 8-byte integer

○ Returns a pointer to the beginning of the allocated block

■ Returns NULL if allocation failed, or size=0

● Pointer to an invalid address (represented as address 0)

○ Blocks typically aligned to 8 or 16 bytes

● Other versions: 

○ calloc: initializes memory to 0

○ realloc: moves existing block to a larger one
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Freeing Memory in C

● void free(void* p)

○ Releases block pointed to by p back to the pool of available memory

○ Pointer p must be the address originally returned by malloc/calloc/realloc

(i.e., beginning of the block)

○ Don’t call free on a block that has already been released!

■ Undefined behavior - can even introduce buffer overflow vulnerabilities!

○ No action occurs if you call free(NULL)
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Best Practices for malloc and free

● malloc

○ Using sizeof makes code more portable (ints aren’t 4B on all machines…)

○ void* is implicitly cast, but explicitly casting will help you catch errors

○ Ex: int* ptr = (int*) malloc(n * sizeof(int));

● free

○ After calling free, set the pointer to NULL

■ Avoids double-free errors

○ Ex:
free(ptr);
ptr = NULL;
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malloc and free Example

void foo(int n) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); // allocate space for array of n ints
if (p == NULL) {                  // check for allocation error

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) // initialize int array

p[i] = i;
free(p); // free p
p = NULL; // good practice to 

set to NULL after free
}
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malloc and free Interface

● Applications

○ Must never access memory not currently allocated

○ Must never free memory not currently allocated

■ Must only use free with previously malloc’ed blocks

● Allocators

○ Must respond immediately to malloc

○ Must allocate blocks from free memory

○ Must align blocks so they satisfy all alignment requirements

○ Can’t move the allocated blocks
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Heap Management in C 

● Likely very different from what you’re used to

● Programmer has to remember to free data when they’re done with it

○ Otherwise, causes a memory leak

● Requires keeping track of where your data is stored

● Bugs are common!
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Find that Bug!

int* p = (int*)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

*p = i;

p++;

}

free(p);
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Find that Bug! (pt 2)

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(N * sizeof(int));

// manipulate y

free(x);
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Find that Bug! (pt 3)

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++) {

y[i] = x[i]++;

}

16



Find that Bug! (pt 4)

typedef struct L {

int val;

struct L* next;

} list; // linked list node

void main() {

list* head = (list*) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}
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Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Explicit free lists (Lab 5)

○ Splitting and coalescing

● Implicit deallocation: garbage collection
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Notation

● We will draw memory divided into words

○ Each word is 64 bit = 8 bytes

○ Note: textbook and old videos still use 32-bit words

● Allocations will be aligned and in sizes that are a multiple of words
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Memory Allocation Example
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Performance Goals

● Given some sequence of malloc and free requests R0, R1, …, Rk, …, Rn-1, 

maximize throughput and peak memory utilization

○ Often conflicting goals!

1) Throughput:

○ Number of completed requests per some unit of time

○ Example: 

■ If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then 

throughput is 1,000 operations/second
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Performance Goals (pt 2)

● Aggregate Payload (Pk)
○ malloc(p) returns a payload of p bytes

○ After request Rk has completed, Pk = the sum of currently allocated payloads

● Current Heap Size (Hk)
○ Allocator can increase heap size using sbrk

■ Assume allocator cannot decrease heap size

2) Peak Memory Utilization (Uk):
○ Memory utilization = aggregate payload ÷ heap size

■ i.e., how much of our heap contains payload data

○ Uk = (maxi≤k Pk)÷Hk after k+1 requests

■ i.e., the maximum utilization at any point up through when Rk has completed
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Fragmentation

● Recall fragmentation in structs

○ Used to preserve alignment

○ Internal: unused space inside of a struct (between fields)

○ External: unused space between struct instances (after fields)

● The heap is similar

○ Internal fragmentation: extra space inside an allocated block

○ External fragmentation: extra space between allocated blocks
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Internal Fragmentation

● Additional space inside of an allocated block not used to store a payload

● Causes

○ Padding for alignment

○ Overhead of maintaining heap data structures

○ Explicit policy decisions (e.g., return a big block to satisfy a small request)

● Easy to measure, only depends on past requests
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External Fragmentation

● Occurs when allocation/free pattern leaves “holes” between blocks

○ Can cause situations where there is enough aggregate heap space to satisfy a 

request, but no single free block is large enough

● Don’t know what future requests 

will be

○ Difficult to impossible to predict 

if past placements will become 

problematic
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Polling Question

1. Which of these statements is FALSE?

A) Temporary arrays should not be allocated on the Heap

B) malloc returns an address of a block that is filled with mystery data

C) Peak memory utilization is a measure of both internal and external fragmentation

D) An allocation failure will cause your program to stop
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Dynamic Memory Allocation

● Overview

○ Introduction and goals

○ Allocation and deallocation (free)

● Malloc and free in C

○ Common memory-related bugs in C

● Fragmentation

● Explicit allocation implementation

○ Implicit free lists

○ Explicit free lists (Lab 5)

○ Splitting and coalescing

● Implicit deallocation: garbage collection
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Implementation Issues

● How do we know how much memory to free given just a pointer?

● How do we keep track of the free blocks?

● How do we pick a block to use for allocation (when many might fit)?

● What do we do with the extra space when allocating a structure that is smaller 

than the free block it is placed in?

● How do we reclaim free blocks?
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Knowing how much to free

● Store the length of the block in a header

○ The word preceding the data

○ Also may contain other info, like whether the block is allocated

● Requires an extra word for every block
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Keeping track of free blocks

● Implicit Free List

○ Use pointer arithmetic to traverse through entire heap until we find a free bock

● Explicit Free List

○ Free block stores pointer to the next free block, forming a linked list

● Others not covered in this class

○ Segregated free lists (different lists for each object type), sorting blocks by size 
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Implicit Free Lists

● For each block, we need to store: size, is_allocated

○ Could use two works, but kinda wasteful…

● Recap: if size is a multiple of 2n, then lowest n bits of the size are always 0

■ Use the lowest bit of header word to store is_allocated flag

■ When reading size, mask this bit out

a = 1 if allocated, 

0 if free

size = total block 

size in bytes

payload for 

allocated blocks 

only

If the header value is h:

h = size | a

a = h & 1

size = h & ~1
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Header Questions

● How many “flags” (boolean values) could we fit in our header if our allocator 

uses 16-byte alignment?

● If we placed a new flag in the second least significant bit, write out a C 

expression that will extract this new flag from the header!
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Summary

● The heap is a segment of memory used to dynamically allocate data

○ Useful when we don’t know the size or when it can be freed until runtime

● Fragmentation is space in the heap that is not used to store payloads

○ Internal: inside of a block

○ External: between blocks

● C uses an explicit allocator, meaning the programmer decides when heap 

data is freed

● Different heap implementations

○ Implicit free list: only store header and payload

○ Explicit free list: free blocks store pointers to the next free block (next lecture)
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