Memory Allocation | My C program exit
CSE 351 Summer 2024 without freeing allocated memory

OS:

Instructor:
Ellis Haker

Teaching Assistants:
Naama Amiel

Micah Chang
Shananda Dokka
Nikolas McNamee
Jiawei Huang

Administrivia

e Today

o HW17 due (11:59pm)
e Friday, 8/2

o RD20 due (1pm)

o NoHW:?)

o Lab 5released (due 8/14)
e Monday, 8/5

o RD21 due (1pm)

o HW19 due (11:59pm)

Topic Group 3: Scale & Coherence

e How do we make memory
accesses faster?

Software Applications

e How do programs manage large (iierivdavg, Byltion- Caclc)
amounts of memory?
o How can we allocate memory Programming Languages & Libraries
dynamically (i e. at runti me) (e.g. Java Runtime Env, C Standard Lib)
OS/App Interface == = = = = = = = = — e - - -
e How does your computer run Operating System

(e.g. MacOS, Windows, Linux)
HW/SWInterface = = = = = = = = = m e e e e e e e e e e e e e e m — = -

Hardware
(e.g. CPU, memory, disk, network, peripherals)

multiple programs at once?

Dynamic Memory Allocation

e Overview
o Introduction and goals
o Allocation and deallocation (free)
e Malloc and freein C
o Common memory-related bugsin C
e Fragmentation
e EXxplicit allocation implementation
o Implicit free lists
o Explicit free lists (Lab 5)
o Splitting and coalescing
e Implicit deallocation: garbage collection

Multiple Ways to Store Program Data

—

e Static global data &«
O
O
o Accessible anywhere i
O
e Stack-allocated data

(@)

Fixed size at compile-
Lasts entire lifetime of the program

time

n the program

A portion is read-only (literals)

int
void foo(int n) {

int tmp; -
/////int local_array[n];
intx_dyn_=

|

sizeof(int\;gL

(intx)malloc(nx

}

-]

Local/temporary variables

m Can be dynamically allocated (in some versions of C)

(@)

e Dynamic (heap) data

©)

pa

Known lifetime (deallocated when function returns)

—-—

Size and lifetime only known at runtime

Dynamic Memory Allocation

e Programmers use dynamic memory allocators to acquire memory at

runtime
o [For data structures whose size or lifetime is known only at runtime
o Stored in heap segment of memory
e Types of allocators
o Implicit: language handles garbage collection, programmer only needs to
allocate the data
m EX newin Java
o Explicit: programmer needs to allocate and deallocate memory
m Ex:mallocand freeinC

Dynamic Memory Allocation (pt 2)

e Allocator organizes data into variable-sized
blocks, which can be allocated or free

e \What happens when the heap runs out of
Space?
o Allocator asks the OS for more!
m sbrkin Unix

Stack

4
T

Heap (via malloc)

Static Data (. bss
and .data)

Literals and
Instructions (. text)

High
addresses

Low
addresses

: : e rermoed Lown o Kgle
Allocating Memory in C ! e b vl e

e Needto #include <stdlib.h> \,_.}\'_, q“’“““h"g_;\:\o \33 s Yue s
e void*x malloc(size_t size) L - N

o Allocates a contiguous block of size bytes of uninitialized memory
o size_t?! Simple typedef for an unsigned 8-byte integer St & NULL c»\wub‘)

o Returns a pointer to the beginning of the allocated block =
m Returns NULL if allocation failed, or size=0 Trots\odes b O
e Pointer to an invalid address (represented as address 0) *“* ¥BL, o
o Blocks typically aligned to 8 or 16 bytes trre v o\

Tshs

e Other versions:
o calloc: initializes memory to O
o realloc: moves existing block to a larger one

Freeing Memory in C

e void free(voidx p)
Releases block pointed to by p back to the pool of available memory
Pointer p must be the address originally returned by malloc/calloc/realloc
(i.e., beginning of the block)
Don’t call free on a block that has already been released!

m Undefined behavior - can even introduce buffer overflow vulnerabilities!
No action occurs if you call free (NULL)

(@)

(@)

Best Practices for malloc and free

e malloc
o Using sizeof makes code more portable (ints aren’t 4B on all machines...)
o voidx is implicitly cast, but explicitly casting will help you catch errors
o Ex:intx ptr = (intx) malloc(n * sizeof(int));
e free
o After calling free, set the pointer to NULL
m Avoids double-free errors

o EX:
free(ptr);
ptr = NULL;

malloc and free Example

void foo(int n) {
int i, *p;
cpué‘ p = (intx) malloc(n*sizeof(int)); // allocate space for array of n ints
(! 1f (p == NULL) { wk oy // check for allocation error
R\ perror("malloc") ;& Qﬂ
w-bs‘-o-}v.
Ani® exit(0);
!
for (i=0; i<nj; i++) // initialize int array
pli] = 13
free(p); // free p
p = NULL; // good practice to
set to NULL after free
N

J

malloc and free Interface

e Applications

o Must never access memory not currently allocated

o Must never free memory not currently allocated

m Must only use free with previously malloc’ed blocks

e Allocators

o Must respond immediately to malloc

o Must allocate blocks from free memory

o Must align blocks so they satisfy all alignment requirements

o Can’t move the allocated blocks

Heap Managementin C

e Likely very different from what you're used to

e Programmer has to remember to free data when they’re done with it
o Otherwise, causes a memory leak

e Requires keeping track of where your data is stored

e Bugs are common! WITH GREATPERFORMANGE
(COMEGREATMEMORY]
l‘]ﬁ I. l]vE;i :]lll 'Y’

Find that Bug!
Leesg

intx p = (intx)malloc(N * sizeof(int)); Q —’?ﬁ
for (int i = 0; i < Nj di++) {

xp = 13

ptt+;&— olfuwz'-s'f
: _
free(p); e—— plliess Lielie -Qrco,rmc\ ek

e s o A
Wo-“f c (e,‘-url,-uL__

F\rﬂuu‘D c— (o{w\—c.(vo_ .-J*wwx— \‘3 \b'c-“oc_/

Find that Bug! (pt 2)

x = (int*)malloc(N * sizeof(int));
// manipulate x
free(x);

y = (intx)malloc(N * sizeof(int));
// manipulate y

freqf?)?)

\)uu\—;\-e/‘ Cren—

Find that Bug! (pt 3)

x = (int*)malloc(N * sizeof(int));
// manipulate x
free(x);

y = (intx)malloc(M * sizeof(int));

for (i=0; i<M; {
y[i] = f\fﬂ++;5/°‘e‘ Aeers

1 9«4»& 7*\

Uae by bree

Find that Bug! (pt 4)

typedef struct L {
int val; 2
struct L*x next;
} list; // linked 1list node
void main() {
list* head = (listx) malloc(sizeof(list));
head->val = 0;
head->next = NULL;
// create and manipulate the rest of the list

Tfree(head); w\\ w\-c/“o;. wagl &

return; Hvmesn +o Mo Vo (e
I Foe B e W el e (b el

Dynamic Memory Allocation

e Overview
o Introduction and goals
o Allocation and deallocation (free)
e Malloc and freein C
o Common memory-related bugs in C
e Fragmentation
e EXxplicit allocation implementation
o Implicit free lists
o Explicit free lists (Lab 5)
o Splitting and coalescing
e Implicit deallocation: garbage collection

Notation

e We will draw memory divided into words
o Eachword is 64 bit = 8 bytes
o Note: textbook and old videos still use 32-bit words
e Allocations will be aligned and in sizes that are a multiple of words

\ J v I
¥ Y
Allocated block Free block =1 word = 8 bytes
(4 words) (3 words) Free word

Allocated word

Memory Allocation Example

pl = malloc(24) ‘

o)
N
I

malloc(32) ‘ I
|

malloc(16)

©
w
I

free(p2) Ll

p4 = malloc(8) ‘

Performance Goals

e Given some sequence of malloc and free requests Ry, Ry, ..., Ry, .., R,

maximize throughput and peak memory utilization
o Often conflicting goals!

1) Throughput:
o Number of completed requests per some unit of time
o Example:
m If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then
throughput is 1,000 operations/second

Performance Goals (pt 2)

e Aggregate Payload (P,)

o malloc(p) returns a payload of p bytes

o After request R, has completed, P, = the sum of currently allocated payloads
e Current Heap Size (H,)

o Allocator can increase heap size using sbrk \
m Assume allocator cannot decrease heap size
#,
2) Peak Memory Utilization (U,): ')
o Memory utilization = aggregate payload + heap size K —
= i.e., how much of our heap contains payload data ¢, t, Fw

o U, = (maxy, P)+H, after k+1 requests

m i.e., the maximum utilization at any point up through when R, has completed

Fragmentation

e Recall fragmentation in structs
o Used to preserve alignment
o Internal: unused space inside of a struct (between fields)
o External: unused space between struct instances (after fields)

e The heap is similar
o Internal fragmentation: extra space inside an allocated block

o External fragmentation: extra space between allocated blocks
S N e

Internal Fragmentation

e Additional space inside of an allocated block not used to store a payload

block
A
o N\
Internal Internal
fragmentation — | payload - fragmentation

e (Causes

o Padding for alignment
o Overhead of maintaining heap data structures
o Explicit policy decisions (e.g., return a big block to satisfy a small request)

e Easyto measure, only depends on past requests

External Fragmentation

e Occurs when allocation/free pattern leaves “holes” between blocks
o Can cause situations where there is enough aggregate heap space to satisfy a

request, but no single free block is large enough

pl = malloc(24)
e Don’t know what future requests ;- .110c(32)
will be
o Difficult to impossible to predict ~ p3 = malloc(16)
if past placements will become
problematic e

AN ‘L we lrew gL wertd be fred e W\L S B Ty

end of A beeops bt Hem % wo we-in Qr‘-J—-a'l’ M.\

L]

9
|

J

External Fragmentation

Polling Question

U
(;v-\" ov ot l’t o_\\.v-‘ &
1. Which of these statements is FALSE? (J y
A) Temporary arrays should not be allocated on the Heap

B) malloc returns an address of a block that is filled with mystery data

C) Peak memory utilization is a measure of both internal and external fragmentation
@ n allocation failure will cause your program to stop T
7 S0 o‘c c~
\ Uk l'z.o-\-'oi-- - (;-43\ oC-e S
e he | L-A-:.e RIS
returws N uLL

Feopertebion 0o L gerd
o L-,\\o.JL. b’) (

0(* e~ Qob\ac,_lo

Dynamic Memory Allocation

e Overview
o Introduction and goals
o Allocation and deallocation (free)
e Malloc and freein C
o Common memory-related bugs in C
e Fragmentation
e Explicit allocation implementation
o Implicit free lists
o Explicit free lists (Lab 5)
o Splitting and coalescing
e Implicit deallocation: garbage collection

Implementation Issues

How do we know how much memory to free given just a pointer?

How do we keep track of the free blocks?

How do we pick a block to use for allocation (when many might fit)?

What do we do with the extra space when allocating a structure that is smaller
than the free block it is placed in?

e How do we reclaim free blocks?

Knowing how much to free

e Store the length of the block in a header
o The word preceding the data
o Also may contain other info, like whether the block is allocated

e Requires an extra word for every block

= 8-byte word (free)

. = 8-byte word
(allocated)

p® = malloc(32) 40

T _
. Y
block size payload

free(pd)

B.1.

Keeping track of free blocks

e Implicit Free List

o Use pointer arithmetic to traverse through entire heap until we find a free bock
Jrob's oy en Wi

Loy, (Awh K‘B e o

- ‘a\

e EXxplicit Free List
o Free block stores pointer to the next free block, forming a linked list

/’/—\ f“’g' [E;w%w) Q.ru-\q\e'-\c
—T N =5
40 16
e | | o] | s grinbets ke

e Others not covered in this class e oy
o Segregated free lists (different lists for each object type), sorting blocks by size

7= Ll|louoP

Implicit Free Lists (2. «o to"u‘*ﬁj 1o |evo

. . 2t = v\ ugage
e For each block, we need to store: size, is_allocated| -; - (¢ou | «=©

o Could use two works, but kinda wasteful. .. fo= te\ | uv?
e Recap: if size is a multiple of 2", then lowest n bits of the size are always 0
m Use the lowest bit of header word to store is_allocated flag

m When reading s1ize, mask this bit out

fﬂ-&n.fvc3 \We.,si— \-;l'i-, Og Ub-"

. size a| a=1ifallocated, He =
Block format: 0 if free If the header value is h:
avioad size = total block h = size | a
s size in bytes a=hg&l
payload for size = h & ~1

allocated blocks

optional padding only sabLilg cﬁ' LowaSt L

Header Questions

e How many “flags” (boolean values) could we fit in our header if our allocator
uses 16-byte alignment? L]

(L :le, loyeest & Like w-’l] k. 0

e If we placed a new flag in the second least significant bit, write outa C
expression that will extract this new flag from the header!

1=c\, LG --0\0
Viesder X 7

Summary

The heap is a segment of memory used to dynamically allocate data

o Useful when we don’t know the size or when it can be freed until runtime
Fragmentation is space in the heap that is not used to store payloads

o Internal: inside of a block

o External: between blocks
C uses an explicit allocator, meaning the programmer decides when heap
data is freed

Different heap implementations
o Implicit free list: only store header and payload
o Explicit free list: free blocks store pointers to the next free block (next lecture)

	Slide 1: Memory Allocation I
	Slide 2: Administrivia
	Slide 3: Topic Group 3: Scale & Coherence
	Slide 4: Dynamic Memory Allocation
	Slide 5: Multiple Ways to Store Program Data
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Allocation (pt 2)
	Slide 8: Allocating Memory in C
	Slide 9: Freeing Memory in C
	Slide 10: Best Practices for malloc and free
	Slide 11: malloc and free Example
	Slide 12: malloc and free Interface
	Slide 13: Heap Management in C
	Slide 14: Find that Bug!
	Slide 15: Find that Bug! (pt 2)
	Slide 16: Find that Bug! (pt 3)
	Slide 17: Find that Bug! (pt 4)
	Slide 18: Dynamic Memory Allocation
	Slide 19: Notation
	Slide 20: Memory Allocation Example
	Slide 21: Performance Goals
	Slide 22: Performance Goals (pt 2)
	Slide 23: Fragmentation
	Slide 24: Internal Fragmentation
	Slide 25: External Fragmentation
	Slide 26: Polling Question
	Slide 27: Dynamic Memory Allocation
	Slide 28: Implementation Issues
	Slide 29: Knowing how much to free
	Slide 30: Keeping track of free blocks
	Slide 31: Implicit Free Lists
	Slide 32: Header Questions
	Slide 33: Summary

