
Caches Wrap-up & Side Channel Attacks
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today

○ Quiz 2 due (11:59pm)

○ Lab4 released (due 8/07)

■ Start early! Shorter turnaround than labs 2 and 3

● Wednesday, 7/31

○ RD19 due (1pm)

○ HW17 due (11:59pm)

● Friday, 8/2

○ RD20 due (1pm)

○ No HW :)

2

Lesson Topics

● Cache Wrap-up

○ More cache images

● Side Channel Attacks

○ Overview

○ Cache timing attacks

○ Spectre and Meltdown

3

Recap: Cache Images

● A contiguous, aligned chunk of

memory the same size as the

cache

● Any two addresses with the same

offset within their respective cache

images will map to the same

location in the cache

4

Cache Image Diagrams from HW17

Example: we have 16B of data

C = 8B, K = 2B

1. Show data in memory

a. Each row = 4B

5

Cache Image Diagrams from HW17 (pt 2)

Example: we have 16B of data

C = 8B, K = 2B

1. Show data in the memory

a. Each row = 4B

2. Purple lines represent cache

blocks

6

Cache Image Diagrams from HW17 (pt3)

Example: we have 16B of data

C = 8B, K = 2B

1. Show data in the memory

a. Each row = 4B

2. Purple lines represent cache

blocks

3. Blue lines represent cache

images

7

Polling Question

1. (Not on Ed) Based on the diagram,

determine the following values:

A) Block size

B) Cache size

2. Assume the cache is direct-mapped,

we start with a cold cache, and that

i, even_sum, and odd_sum are

stored in registers. How many times

will a block be evicted from the

cache?

short ar[8]; //&ar = 0x100
int i, even_sum = 0, odd_sum = 0;
for (i = 0; i < 8; i += 2) {

even_sum += ar[i];
}
for (i = 0; i < 8; i += 2) {

odd_sum += ar[i+1];
}

8

9

short ar[8]; //&ar = 0x100
int i, even_sum = 0, odd_sum = 0;
for (i = 0; i < 8; i += 2) {

even_sum += ar[i];
}
for (i = 0; i < 8; i += 2) {

odd_sum += ar[i+1];
}

Lesson Topics

● Cache Wrap-up

○ More cache images

● Side Channel Attacks

○ Overview

○ Cache timing attacks

○ Spectre and Meltdown

10

Side Channel Attacks

● Attacks that use side effects of the physical

implementation of a system in order to gain

information

Example: can you guess the passcode for this block?

11

Side Channels in Computer Security

● Observable changes in hardware during program execution
○ Heat

○ Sound

○ Time

Example: how can this code be exploited?

// Return 1 if password is correct, 0 otherwise
int check_password(char* input, char* real) {

for (i = 0; input[i] != 0 && real[i] != 0; i++) {
if (input[i] != real[i])

return 0;
}
return 1;

}

12

Example: Password Checker

// Return 1 if password is correct, 0 otherwise
int check_password(char* input, char* real) {

for (i = 0; input[i] != 0 && real[i] != 0; i++) {
if (input[i] != real[i])

return 0;
}
return 1;

}

Function returns as soon as it reaches a character that

doesn’t match

Input Runtime

aaaaa 1ms

baaaa 1ms

caaaa 2ms

cbaaa 2ms

ccaaa 2ms

cdaaa 2ms

ceaaa 3ms

… …

13

Cache Timing Attacks

● Recap:

○ Cache misses take significantly longer than hits

○ Each address will map to a single set in the cache

● Conclusion:

○ By monitoring how long a memory access takes, we can tell whether or not it’s

in the cache!

● Common method: “Flush + Reload”

○ Allows attacker to figure out whether some address was accessed by another

program

14

Attack Time

15

Flush + Reload

1. Fill the cache with data (“flush”)

16

Flush + Reload (pt 2)

1. Fill the cache with data (“flush”)

2. Let victim code run

a. It will load its data into the cache

17

Flush + Reload (pt 3)

1. Fill the cache with data (“flush”)

2. Let victim code run

a. It will load its data into the cache

3. Access the address we want to

know about (“reload”)

a. Slow: it’s not in the cache

b. Fast: it is in the cache - victim

must have accessed it!

18

Lesson Topics

● Cache Wrap-up

○ More cache images

● Side Channel Attacks

○ Overview

○ Cache timing attacks

○ Spectre and Meltdown

19

Speculative Execution

● Modern CPUs use pipelining - execute instructions ahead of time
○ Ex: while CPU is computing the result for one instruction, start fetching data for

the next one

● An analogy:
○ Imagine you have to bake 10 cakes

■ Each one takes 1 hr to make (30 min to make the batter + 30 min to bake)

■ Making each batch separately: 10hrs :(

○ What can you do to speed this up?

■ While one batch is baking, make the batter for the next one!

■ Total time: 5.5hrs :)

20

Branch Prediction

● Problem: when executing a conditional branch, how does the CPU know

which instruction to start working on?

○ Doesn’t know which instruction will come next until after the jump finishes

● Solution: branch prediction

○ CPU learns observes program behavior during branches

○ Makes an educated guess as to whether a branch will be taken based on previous

behavior

■ If the guess is correct: we saved time!

■ If it’s wrong: go back and execute correct branch

21

Branch Prediction Example:

for (int i = 0; i < n; i++) {
<loop body>

}
. . .

movl $0, %eax # i=0
jmp .condition

.loop:
<loop body>
addl $1, %eax # i++

.condition:
cmpl %edi, %eax # i<n
jl .loop
. . .

● When executing the jl instruction, is it more likely to take the jump (restart

loop), or not?

○ Hint: which scenario occurs more often?

22

Spectre Attacks

Exploit both cache timing and speculative execution

1. Train branch predictor to take a particular branch

2. Make that branch access some memory location you normally wouldn’t have

access to

a. Loads that memory location into the cache

b. Even after the CPU realizes it’s in the wrong branch, the data will still be in the

cache!

3. Use cache timing to figure out what was accessed

23

Specter Attacks Example
// check value of x to prevent
// out-of-bounds array access
if (x < array_size)

y = array2[array1[x] * 4096];

1. Train branch predictor to go into the if statement

2. Pass in a value of x that is much larger than array_size

a. The CPU will speculatively execute the if statement body while the conditional

jump is being computed

b. Loads array2[array1[x] * 4096] into the cache

3. Use flush + reload to figure out where array2[array1[x] * 4096] is

a. This will tell you what the value of array1[x] was

24

Spectre and Meltdown History

● In 2018, two different research groups found that Intel CPUs were vulnerable

to attacks using cache side channels and speculative execution

○ Spectre exploits branch prediction to access victim’s data

○ Meltdown exploits a race condition to gain access to OS memory

○ Affected all Intel CPUs from the previous 20 years!

● Since then, other variants have been found

○ Vulnerabilities in ARM CPUs too

25

Spectre and Meltdown Mitigations

● Prevent attacker from accessing victim’s data

○ Virtual Memory: future lecture topic!

○ Other methods not talked about in this class

● Prevent speculative execution

○ Turn off branch prediction when running vulnerable code

○ Don’t let branch prediction training carry across programs

■ i.e., CPU “forgets” prior training when switching between programs

■ Prevents attacker from mistraining branch predictor

● However, these strategies not used that often. Why?

26

Spectre and Meltdown Mitigations (pt 2)

● Many of these mitigation strategies are not commonly used. Why?

○ High performance cost.

■ Turning off speculative execution slows down a CPU by ~30%

○ Attacks are unlikely

■ Require the attacker to already have access to the victim computer and some

the victim program

■ There is no evidence of these attacks actually occurring in the wild (i.e.

outside of a research environment)

27

Discussion

Discuss the following in groups of 2-4, then we’ll share out as a class.

● Despite the initial panic, little has actually been done to remove the

vulnerabilities that allow Spectre and Meltdown to occur. Why do you think

this is? Some things to consider:

○ Would you buy a computer that had was 100% resistant to being hacked, but was

30% slower?

○ If you were a business executive at a tech company, how much would you be

willing to pay to ensure your product was completely secure?

■ What if it came at the cost of other functionality (speed, features, etc.)

● Do you think we should be doing more, or are things fine the way they are?

28

Conclusion

● Cache side channel vulnerabilities are a result of features we’ve added to

improve performance (caches, speculative execution, etc.)

● Completely preventing attacks would require us to give up those performance

gains, so we just live with it ¯_ (ツ)_/¯

○ Tradeoff between security, functionality, and performance

Want to learn more? Take these classes:

● CSE 484 (Security)

● CSE 451 (Operating Systems)

● CSE 469 (Computer Architecture)

29

	Slide 1: Caches Wrap-up & Side Channel Attacks
	Slide 2: Administrivia
	Slide 3: Lesson Topics
	Slide 4: Recap: Cache Images
	Slide 5: Cache Image Diagrams from HW17
	Slide 6: Cache Image Diagrams from HW17 (pt 2)
	Slide 7: Cache Image Diagrams from HW17 (pt3)
	Slide 8: Polling Question
	Slide 9
	Slide 10: Lesson Topics
	Slide 11: Side Channel Attacks
	Slide 12: Side Channels in Computer Security
	Slide 13: Example: Password Checker
	Slide 14: Cache Timing Attacks
	Slide 15: Attack Time
	Slide 16: Flush + Reload
	Slide 17: Flush + Reload (pt 2)
	Slide 18: Flush + Reload (pt 3)
	Slide 19: Lesson Topics
	Slide 20: Speculative Execution
	Slide 21: Branch Prediction
	Slide 22: Branch Prediction Example:
	Slide 23: Spectre Attacks
	Slide 24: Specter Attacks Example
	Slide 25: Spectre and Meltdown History
	Slide 26: Spectre and Meltdown Mitigations
	Slide 27: Spectre and Meltdown Mitigations (pt 2)
	Slide 28: Discussion
	Slide 29: Conclusion

