
Caches IV
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Nothing due tonight!

● Sunday, 7/28

○ Lab3 due (11:59pm)

● Monday, 7/29

○ HW15-16 due (11:59pm)

○ Quiz 2 due (11:59pm)

I made some mistakes in the last lecture (I was… very tired)

● Ed slides have been fixed, and we’ll go over the last problem again today

2

Code Analysis

● Assuming cache starts cold (i.e. all blocks invalid), and sum, i, and j are all

stored in registers, calculate the miss rate.
○ m = 10 bits, C = 64B, K = 8B, E = 2

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

3

Code Analysis: relevant values

● m = 10 bits, C = 64B, K = 8B, E = 2

○ k = 3, s = 2

● 8B blocks = 4 shorts per block

● Starting address = 0b10000 00 000
○ Block stored in set 0, tag = 0b10000 =

0x10

Set Tag Data Tag Data

0

1

2

3

4

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Code Analysis: step 1

● Access ar[0][0]

○ 0b10000 00 000

■ Miss!

○ Load block into set 0 with tag 0x10

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Set Tag Data Tag Data

0 10 a[0][0] …

a[0][3]

1

2

3

i = 0, j = 0 Misses: 1

Hits: 0

5

Code Analysis: step 2

● Access ar[1][0]

○ 0b10000 10 000

■ Miss!

○ Load block into set 2 with tag 0x10

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Set Tag Data Tag Data

0 10 a[0][0] …

a[0][3]

1

2 10 a[1][0] …

a[1][3]

3

Misses: 2

Hits: 0
i = 0, j = 1

6

Code Analysis: step 3

● Access ar[2][0]

○ 0b10001 00 000

■ Miss!

○ Load block into set 0 with tag 0x11

■ Can store both blocks in set 0

because of associativity

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Misses: 3

Hits: 0
i = 0, j = 2

Set Tag Data Tag Data

0 10 a[0][0] …

a[0][3]

11 a[2][0] …

a[2][3]

1

2 10 a[1][0] …

a[1][3]

3

7

Code Analysis: step 4

● Access ar[3][0]

○ 0b10001 10 000

■ Miss!

○ Load block into set 1 with tag 0x11

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Misses: 4

Hits: 0
i = 0, j = 3

Set Tag Data Tag Data

0 10 a[0][0] …

a[0][3]

11 a[2][0] …

a[2][3]

1

2 10 a[1][0] …

a[1][3]

11 a[3][0] …

a[3][3]

3

8

Code Analysis: step 5

● Access ar[4][0]

○ 0b10010 00 000

■ Miss!

○ Load block into set 0 with tag 0x12

■ Evicts least recently used block

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Misses: 5

Hits: 0
i = 0, j = 4

Set Tag Data Tag Data

0 12 a[4][0] …

a[4][3]

11 a[2][0] …

a[2][3]

1

2 10 a[1][0] …

a[1][3]

11 a[3][0] …

a[3][3]

3

9

Code Analysis: step 6-8

● Same as step 5

○ Accesses to a[5][0], a[6][0], and

a[7][0] will kick out the old blocks in the

cache

● So for i = 0:

○ 8 accesses total (j = 0…7), 8 misses

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Misses: 8

Hits: 0
i = 0, j = 5…

Set Tag Data Tag Data

0 12 a[4][0] …

a[4][3]

13 a[6][0] …

a[6][3]

1

2 12 a[5][0] …

a[5][3]

13 a[7][0] …

a[7][3]

3

10

Code Analysis: step 9

● Access ar[0][1]

○ 0b10000 00 010

■ Same block that we loaded in in step

1, but it got evicted in step 5!

■ Miss!

○ Load block back into set 0

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

Misses: 9

Hits: 0
i = 1, j = 0

Set Tag Data Tag Data

0 10 a[0][0] …

a[0][3]

13 a[6][0] …

a[6][3]

1

2 12 a[5][0] …

a[5][3]

13 a[7][0] …

a[7][3]

3

11

Code Analysis: step 10+

● All future accesses will continue to follow this pattern

○ Each block is loaded in, then kicked out of the cache before it’s accessed again

● Miss rate 100%!

● How can we fix this?

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

12

Improving Cache Performance

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

}

● Reduce stride

○ I.e. access data that’s closer together

13

Improving Cache Performance Example: step 1

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

}

● First 4 accesses:

○ ar[0][0]: miss, load block into the cache

○ ar[0][1]: hit!

○ ar[0][2]: hit!

○ ar[0][3]: hit!

Set Tag Data Tag Data

0 10 ar[0][0] …

ar[0][3]

1

2

3

Misses: 1

Hits: 3

14

Improving Cache Performance Example: step 2

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

}

● Next 4 accesses:

○ ar[0][4]: miss, load block into the cache

○ ar[0][5]: hit!

○ ar[0][6]: hit!

○ ar[0][7]: hit!

Set Tag Data Tag Data

0 10 ar[0][0] …

ar[0][3]

1 10 ar[0][4] …

ar[0][7]

2

3

Misses: 2

Hits: 6

15

Improving Cache Performance Example: step 3+

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

}

● All accesses follow this pattern

○ Because we use a whole block before

moving on, we will miss 1 out of every 4

accesses

● Miss rate: 25%

16

Caches

● Cache basics

● Principle of locality

● Memory hierarchies

● Cache organization

○ Direct-mapped (sets; index + tag)

○ Associativity (ways)

○ Replacement policy

○ Handling writes

● Program optimizations that consider caches

17

Write-Hit Policies

What to do if the data is already in the cache?

● Write-through: immediately write to the next level

● Write-back: don’t write to next level until we have to

○ Keep track of dirty bit for each block

○ On eviction, if dirty bit is set, write contents back to memory

Write-through Write-back

18

Write-Miss Policies

● What to do if the block we want to write to is not in the cache?

● No-write-allocate (“write around”): don’t load into the cache, just write to the

next level

● Write-allocate (“fetch on write”) load data into the cache before writing

No-write-allocate Write-allocate

19

Ex: Write-Back, Write-Allocate Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache
● Single-block mini cache

○ Tag includes the entire block number

○ Not a realistic example

20

Ex: Write-Back, Write-Allocate (pt 2) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache
1. mov $0xB0BA, (F) Not valid x86. Assume

we mean an address

within block F.Write miss

21

Ex: Write-Back, Write-Allocate (pt 3) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache

1. Bring F into

cache

1. mov $0xB0BA, (F)

Write miss

22

Ex: Write-Back, Write-Allocate (pt 4) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache

1. Bring F into

cache

2. Write 0xB0BA

into cache only

a. Set dirty bit

1. mov $0xB0BA, (F)

Write miss

23

Ex: Write-Back, Write-Allocate (pt 5) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache
2. mov $0xF00D, (F)

Write hit

24

Ex: Write-Back, Write-Allocate (pt 6) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache

1. Write 0xF00D

into cache only

a. Set dirty bit

2. mov $0xF00D, (F)

Write hit

25

Ex: Write-Back, Write-Allocate (pt 7) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache
3. mov (G), %ax

Read miss

26

Ex: Write-Back, Write-Allocate (pt 8) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache

1. Write F back to

memory since it

is dirty

3. mov (G), %ax

Read miss

27

Ex: Write-Back, Write-Allocate (pt 9) Write-back: defer write to

next level until line is evicted

Write-allocate: on a miss,

bring the data into cache

1. Write F back to

memory since it

is dirty

2. Bring G into

cache

3. mov (G), %ax

Read miss

28

Common Policies

● Write-back + Write-allocate

○ (most common)

● Write-through + No-write-allocate

○ When would this be used?

29

Polling Question

1. Which of the following cache statements is FALSE?

A) A write-through cache will always match data with the memory hierarchy level

below it.

B) We can reduce compulsory misses by decreasing our block size.

C) A write-back cache will save time for code with good temporal locality on writes.

D) We can reduce conflict misses by increasing associativity

30

Cache Simulator

● Want to play around with cache parameters and policies? Check out our

cache simulator!

○ https://courses.cs.washington.edu/courses/cse351/cachesim/

● Way to use:

○ Take advantage of “explain mode” and navigable history to test your own

hypotheses and answer your own questions

○ Self-guided Cache Sim Demo in section

○ Will be used in HW17 – Lab 4 Preparation

31

https://courses.cs.washington.edu/courses/cse351/cachesim/

Caches

● Cache basics

● Principle of locality

● Memory hierarchies

● Cache organization

○ Direct-mapped (sets; index + tag)

○ Associativity (ways)

○ Replacement policy

○ Handling writes

● Program optimizations that consider caches

32

Optimizations for the Memory Hierarchy

● Write code that has locality

○ Spatial: access data contiguously

○ Temporal: make sure access to the same data is not too far apart in time

● How can you achieve locality?

○ Adjust memory accesses in code to improve miss rate (MR)

■ Requires knowledge of both how caches work as well as your system’s

parameters

○ Proper choice of algorithm

○ Loop transformations

33

Example: Matrix Multiplication

cij = σk=1
𝑛 aik ∗bkj

34

Matrices in Memory

● How do cache blocks fit into this

scheme?

○ Row-major in memory

○ Column of matrix is spread

across multiple cache blocks

35

Naive Matrix Multiply // move along rows of A
for (i = 0; i < n; i++) {

// move along columns of B
for (j = 0; j < n; j++) {

// Reads row of A, col of B
// Read & write c(i,j) n times
for (k = 0; k < n; k++)

c[i*n+j] += a[i*n+k] * b[k*n+j];
}

}

＝ ＋ ✕

How many memory

accesses are in this

line?

36

Cache Miss Analysis (Naive)

● Example parameters:

○ A and B are square (n✕n) matrices of doubles

○ Cache block size K = 64B

■ 8 elements per block

○ Cache size C << n (much smaller)

● For each element of C
○ n/8 misses per row of A

○ n misses per column B

○ 9n/8 misses per iteration

● n2 elements in total

○ 9n3/8 misses

Ignoring misses

in matrix C

37

Linear Algebra To The Rescue

● Can get the same result of a matrix multiplication by splitting the matrices into

smaller submatrices (“blocks”)

● Example: multiply 2 4✕4 matrices

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

A11 A12

A21 A22

＝A＝ , with B defined similarly

AB＝
(A11B11+ A12B21) (A11B12+ A12B22)

(A21B11+ A22B21) (A21B12+ A22B22)

38

Linear Algebra To The Rescue (pt 2)

● Split up each matrix into smaller blocks

○ Choose a block size that will fit in the cache!

○ This technique is called cache blocking

● Perform multiplication block-by-block (rather than row-by-row)

C22 = A21B12 + A22B22 + A23B32 + A24B42 = σk=1
𝑛 A2k∗Bk2

39

Blocked Matrix Multiply

● r = length of a block (assume r divides n evenly)

// Go through each rxr block of C
for (i = 0; i < n; i += r)

for (j = 0; j < n; j += r)
// Go through each block A(i, k) and B(k, j)
for (k = 0; k < n; k += r)

// Multiply the two blocks (same as naive algorithm)
for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

40

Cache Miss Analysis (Blocked)

● Example parameters:

○ Cache block size K = 64B

■ 8 elements per block

○ Cache size C << n (much smaller)

○ Cache can hold 3 blocks (r✕r): 3r2 < C

● For each block of C
○ r2/8 misses per block

■ 8 elements per cache block

○ 2n/r blocks accessed (row and col) -> 2n/r * r2/8 = nr/4 misses

● (n/r)2 blocks in total

○ nr/4 * (n/r)2 = n3/4r misses

Ignoring misses

in matrix C

Compare to 9n3/8

from before

41

Cache Images

● Recap:

○ Blocks are contiguous chunks of

memory

○ Contiguous blocks in memory map to

contiguous cache sets

● Conclusion:

○ Let B = the number of blocks

the cache can hold (C / K)

○ A contiguous, aligned chunk of

B blocks (C bytes) can all fit

into the cache at once!

42

Cache Images (pt 2)

● Cache image: an aligned chunk of memory the same size as the cache
○ Guaranteed to all fit in the cache at once

■ Locality!

○ The offset of an address within its cache image tells

you where in the cache it will map to

■ Two addresses with the same offset in different

images will map to the same location in the

cache

43

Summary

● Programmer can optimize for cache performance

○ How data structures are organized

○ How data is accessed

■ Cache blocking for 2D arrays

● Getting absolute optimum performance is very platform specific

○ Depends on cache size, block size, associativity, etc.

○ Generic guidelines:

■ Keep working set reasonably small (temporal locality)

■ Use small strides (spatial locality)

■ Focus on inner loop code (for nested loops)

● Cache images can help you quickly figure out where data will go in the cache

44

	Slide 1: Caches IV
	Slide 2: Administrivia
	Slide 3: Code Analysis
	Slide 4: Code Analysis: relevant values
	Slide 5: Code Analysis: step 1
	Slide 6: Code Analysis: step 2
	Slide 7: Code Analysis: step 3
	Slide 8: Code Analysis: step 4
	Slide 9: Code Analysis: step 5
	Slide 10: Code Analysis: step 6-8
	Slide 11: Code Analysis: step 9
	Slide 12: Code Analysis: step 10+
	Slide 13: Improving Cache Performance
	Slide 14: Improving Cache Performance Example: step 1
	Slide 15: Improving Cache Performance Example: step 2
	Slide 16: Improving Cache Performance Example: step 3+
	Slide 17: Caches
	Slide 18: Write-Hit Policies
	Slide 19: Write-Miss Policies
	Slide 20: Ex: Write-Back, Write-Allocate
	Slide 21: Ex: Write-Back, Write-Allocate (pt 2)
	Slide 22: Ex: Write-Back, Write-Allocate (pt 3)
	Slide 23: Ex: Write-Back, Write-Allocate (pt 4)
	Slide 24: Ex: Write-Back, Write-Allocate (pt 5)
	Slide 25: Ex: Write-Back, Write-Allocate (pt 6)
	Slide 26: Ex: Write-Back, Write-Allocate (pt 7)
	Slide 27: Ex: Write-Back, Write-Allocate (pt 8)
	Slide 28: Ex: Write-Back, Write-Allocate (pt 9)
	Slide 29: Common Policies
	Slide 30: Polling Question
	Slide 31: Cache Simulator
	Slide 32: Caches
	Slide 33: Optimizations for the Memory Hierarchy
	Slide 34: Example: Matrix Multiplication
	Slide 35: Matrices in Memory
	Slide 36: Naive Matrix Multiply
	Slide 37: Cache Miss Analysis (Naive)
	Slide 38: Linear Algebra To The Rescue
	Slide 39: Linear Algebra To The Rescue (pt 2)
	Slide 40: Blocked Matrix Multiply
	Slide 41: Cache Miss Analysis (Blocked)
	Slide 42: Cache Images
	Slide 43: Cache Images (pt 2)
	Slide 44: Summary

