
Caches III
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1



Administrivia

● Today

○ HW14 due (11:59pm)

● Friday, 7/26

○ RD17 (1pm)

○ No HW due!

● Sunday, 7/28

○ Lab3 due (11:59pm)

● Monday, 7/29

○ No RD due!

○ HW15 + 16 due (11:59pm)

○ Quiz 2 due (11:59pm)

2



Caches

● Cache basics

● Principle of locality

● Memory hierarchies

● Cache organization

○ Direct-mapped (sets; index + tag)

○ Associativity (ways)

○ Replacement policy

○ Handling writes

● Program optimizations that consider caches

3



Recap: Direct-Mapped Cache

● Each block in memory can 

only go into one set

○ Fast and simple

● Hash function

○ (Block #) mod (# of sets)

4



Direct-Mapped: a Problem!

● What if we have the 

following access pattern:

○ 0, 16, 0, 16, …

○ Each access will 

miss

■ Thrashing!

○ Rest of the cache 

unused

5



One Solution: Fully Associative

● Can store any data block anywhere in the cache

○ When loading in a new block, store it in the first unused space

○ Only evict old blocks when the entire cache is full!

● Problems with this?

○ Requires complicated hardware to check each set

■ More power consumed, slower

No index field 

needed!

6



Full Solution: Associativity

● Rather than just one block per set, we can have multiple

○ Cache line = block + relevant metadata (i.e. tag)

○ Associativity (E) = number of lines in a set

■ Cache is “E-way set associative”

● If any block can go in any set, the cache is Fully Associative

1-way (1 block per set, 4 sets)

Direct-Mapped

2-way (2 blocks per set, 2 sets) 4-way (4 blocks per set, 1 set)

Fully-Associative

7



Cache Organization: Associativity

K = block size (in bytes), C = cache size (in bytes), E = associativity

● S = number of sets = C÷K÷E

● Use lowest s = log2(S) bits of block number to find the set

○ Direct-Mapped: E = 1, so s = log2(C÷K), same as we saw previously

○ Fully Associative: E = C÷K, so log2(1) = 0

Direct-Mapped n-way Set Associative Fully Associative

8



Example Placement #1

● Where would data from address 0x1833 be placed?
○ 0b0001 1000 0011 0011

Block size 𝑲: 16 B

Capacity 𝑪/𝑲: 8 blocks

Address 𝒎: 16 bits

s = ____ s = ____ s = ____

9



Block Placement and Replacement

● If there is an empty line in the set, store data there

○ How to tell if the line is empty? Valid bit (0 = empty, 1 = used)

■ Stored in cache line

● If there are no empty lines, which one do we replace?

○ No choice for direct-mapped, easy!

○ For other caches, need a replacement policy

■ Ideal is least recently used (LRU)

■ Most real caches approximate LRU

10



Polling Questions

1. We have a cache of size 2 KiB with block size of 128 B. If our cache has 2 

sets, what is its associativity?

A) 2

B) 4

C) 8

D) 16

2. If addresses are 16 bits wide, how wide is the Tag field?

11



General Cache Layout Review

C = total bytes = K*E*S

(does not include tag or valid bit)

12



Notation Review

Parameter Variable Formulas

Block size K (B in book)

C = K*E*S S=C/K/E

k = log2(K) K = 2k

s = log2(S) S = 2s

m = log2(M) M = 2m

m = t + s + k

Cache size C

Associativity E

Number of sets S

Address space M

Address width m

Offset field width k (b in book)

Index field width s

Tag field width t

13



Example Cache Problem

1KiB address space, 125 cycles to go to memory. Fill in the following table:

Cache size (C) 64B

Block size (K) 8B

Associativity (E) 2-way

Hit Time 3 cycles

Miss Rate 20%

Address width (m)

Offset bits (k)

Index bits (s)

Tag bits (t)

AMAT

14



Read: General Steps

1. Break up address into offset, index, and tag

2. Locate the set using index

3. Check if any line in the set has our data

a. Valid bit = 1 and tag matches

b. If yes - hit!

i. Otherwise, load in from memory

4. Read out data from block starting at offset

15



Read: Direct-Mapped Cache

One line per set (E=1), K=4B

1. Locate set

16



Read: Direct-Mapped Cache (pt 2)

One line per set (E=1), K=4B

1. Locate set

2. Check if valid and compare tag

a. No match? Old block gets evicted, replaced with new one

17



Read: Direct-Mapped Cache (pt 3)

One line per set (E=1), K=4B

1. Locate set

2. Check if valid and compare tag

3. Get data starting at offset

18



Read: Set Associative Cache

Two lines per set (E=2), K=4B

1. Locate set

19



Read: Set Associative Cache (pt 2)

Two lines per set (E=2), K=4B

1. Locate set

2. Check if valid and compare tag for every line in the set

a. No match? One line is selected to get evicted and replaced by new one

20



Read: Set Associative Cache (pt 3)

Two lines per set (E=2), K=4B

1. Locate set

2. Check if valid and compare tag for every line in the set

3. Get data starting at offset

21



Types of Cache Misses: 3 C’s

● Compulsory (cold-start) miss

○ Occurs on the first access to a block

○ Smaller block size = more compulsory misses

● Conflict miss

○ Occurs when cache is large enough to hold multiple data blocks, but they cannot be in 

the cache at the same time because they conflict

○ Lower associativity = more conflict misses

■ Does not occur in fully associative caches

● Capacity miss

○ Occurs when the set of active blocks (the working set) is too big to fit in the cache

○ Smaller cache size = more capacity misses

22



Code Analysis

● Assuming cache starts cold (i.e. all blocks invalid), and sum, i, and j are all 

stored in registers, calculate the miss rate.
○ m = 10 bits, C = 64B, K = 8B, E = 2

#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)
sum += ar[j][i];

}

23



Summary

● Associativity: number of cache lines in a set

○ Direct-Mapped caches have associativity 1

○ Fully Associative caches have associativity equal to # of blocks (all in one set)

○ Most caches are somewhere in between

● 3 types of misses

○ Compulsory: first time accessing block

○ Conflict: block was evicted by another when the cache was not full

○ Capacity: block was evicted because the cache was full

24


	Slide 1: Caches III
	Slide 2: Administrivia
	Slide 3: Caches
	Slide 4: Recap: Direct-Mapped Cache
	Slide 5: Direct-Mapped: a Problem!
	Slide 6: One Solution: Fully Associative
	Slide 7: Full Solution: Associativity
	Slide 8: Cache Organization: Associativity
	Slide 9: Example Placement #1
	Slide 10: Block Placement and Replacement
	Slide 11: Polling Questions
	Slide 12: General Cache Layout Review
	Slide 13: Notation Review
	Slide 14: Example Cache Problem
	Slide 15: Read: General Steps
	Slide 16: Read: Direct-Mapped Cache
	Slide 17: Read: Direct-Mapped Cache (pt 2)
	Slide 18: Read: Direct-Mapped Cache (pt 3)
	Slide 19: Read: Set Associative Cache
	Slide 20: Read: Set Associative Cache (pt 2)
	Slide 21: Read: Set Associative Cache (pt 3)
	Slide 22: Types of Cache Misses: 3 C’s
	Slide 23: Code Analysis
	Slide 24: Summary

