
Caches II
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Labs 2 and 3 extended

○ Regular Lab 2 date was yesterday (7/21) (late due date is tomorrow (7/23))

○ Lab 3 will be due Sunday 7/28 (late due date Tuesday 7/30)

● Today:

○ HW13 Due (11:59pm)

○ HW15 and 16 released

■ Combined, due Monday 7/29

○ Quiz 2 Released (11:59pm)

● Wednesday 7/24

○ RD16 Due (1pm)

○ HW14 Due (11:59pm)

2

Mid-Quarter Updates

● Extra office hour on Zoom (link on the course calendar)

○ Wednesdays 6pm-7pm

○ Ellis this week, Shananda after that

● Additional resources

○ Videos on the course website Topic Videos page

○ Optional textbook - Computer Systems: a Programmer’s Perspective

■ Readings on the course website Schedule

■ Copies in the Allen School study center and my office

● I’m trying to slow down in lecture

○ Please stop me if I’m going too fast :)

3

https://courses.cs.washington.edu/courses/cse351/24su/videos.html

Memory Hierarchy Review

CPU registers hold words retrieved from L1 cache

L1 cache holds lines (i.e. blocks) retrieved from L2 cache

L2 cache holds lines retrieved from main memory

Main memory holds disk blocks retrieved

from local disks

Local disks hold files retrieved from disks on

remote network servers

4

Memory Hierarchy Review (pt 2)

5

Memory Hierarchy Review (pt 3)

6

Example Microarchitecture: Intel Core i7

● Block size:
64 bytes for all caches

● L1 i-cache and d-cache:
○ 32 KiB, 8-way,
○ Access: 4 cycles

● L2 unified cache:
○ 256 KiB, 8-way,
○ Access: 11 cycles

● L3 unified cache:
○ 8 MiB, 16-way,
○ Access: 30-40 cycles

7

Caches

● Cache basics

● Principle of locality

● Memory hierarchies

● Cache organization

○ Direct-mapped (sets; index + tag)

○ Associativity (ways)

○ Replacement policy

○ Handling writes

● Program optimizations that consider caches

8

Review Question

We have a direct-mapped cache with the following parameters:

● Block size of 8 bytes

● Cache size of 4 KiB

1. How many blocks can the cache hold?

2. How many bits wide is the block offset field?

3. Which of the following addresses (could be multiple) would fall under block 3?

A) 0x3

B) 0x1F

C) 0x30

D) 0x38

9

Reading Terminology Review

● Cache Parameters

○ Block size (K)

○ Cache size (C bytes, or S sets)

● Address fields

○ Block offset (k bits wide)

○ Block number (also called “block

address”)

■ Index field (s bits wide)

■ Tag (t bits wide)

10

Cache Organization: Block Size

● Block Size (K): unit of transfer between cache and memory

○ Given in bytes and always a power of 2

○ Blocks are aligned and consist of adjacent bytes

■ Spatial locality!

Example: K = 4B

11

Cache Organization: Block Size (pt 2)

● Given block size K:

Example: If we have 6-bit addresses and K = 4B, which block does address 0x15

belong to? What is its offset within that block?

● Define k = log2(K)

○ Lowest k bits of address tell us the block offset

12

○ Address ÷ K = block number (i.e. which block this address belongs to)

○ Address % K = block offset (i.e. where in the block this address is located)

Cache Organization: Cache Size

● Cache size (C) = how much data the cache can hold

○ Does not include any metadata

○ If size is (C) bytes, then the cache can hold C/K blocks

■ Ex: if C = 32KiB and K = 64B, then the cache can hold 512 blocks

● Where should data go in the cache?

○ We need a mapping from memory addresses to specific locations in the cache to

make checking the cache for an address fast

● What data structure provides fast lookup?

13

Hash Tables for Fast Lookup

● Divide cache into “buckets” (sets)

○ Apply hash function to map each block to a set

○ What’s a simple hash function we can use?

Example: If we have 10 sets, what indices should each of

these blocks go into?

● 5

● 27

● 34

● 102

14

Cache Organization: Sets

● Number of sets (S) = cache size (C) ÷ block size (K)

○ Always a power of 2

○ Block number % S = set index (i.e. where in the cache this block goes

● Define s = log2(S)

○ Lowest s bits of the block number tell us the index

15

Memory and Cache Example In this example:

K = 4B

S = 4

● Map blocks to cache sets

○ Block# mod S = index

16

Memory and Cache Example (pt 2) In this example:

K = 4B

S = 4

● Map blocks to cache sets

○ Block# mod S = index

● Adjacent blocks can fit

into the cache at the

same time!

○ Map to consecutive

sets

17

Polling Question

● 6-bit addresses, block size K = 4 B, and our cache holds S = 4 blocks

● The CPU requests data at address 0x2A.

○ Which index can this address be found in?

○ Which 3 other addresses can be found in the same block? (No Ed poll for this one)

18

Cache Organization: Sets and Tags

● Problem: multiple blocks in memory will map to the same set

○ There will always be more blocks than sets because cache is smaller than

memory

○ If we look in a set in the cache, how can we tell which block in memory it has?

● Solution: store the remaining bits of the block number as a tag

19

Memory and Cache Example (pt 3)

● Save the tag in the

cache along with the

data block

○ All bits of the block#

not used for the index

In this example:

K = 4B

S = 4

20

Memory and Cache Example (pt 4)

● Save the tag in the

cache along with the

data block

○ All bits of the block#

not used for the index

● On lookup, check the tag

to make sure we have the

right block

In this example:

K = 4B

S = 4

21

Accessing Data

1. CPU requests a chunk of data at some address

2. Break address up into Tag, Index, and Offset

a. O = lowest k bits, I = next s bits, T = remaining bits

b. Check set I in the cache

c. If the tag matches T, return the data starting at offset O

d. Otherwise, load block from memory

i. Goes into set I, update tag to match

ii. Then return the data at offset O

22

Accessing Data Example: Before

● Block 0 already loaded

into the cache

● CPU requests 2B of

data at address

0b010001

In this example:

K = 4B

S = 4

23

Accessing Data Example: T/I/O breakdown

● k = 2, s = 2

● CPU requests data at

address 0b010001

○ T = 0b01

○ I = 0b00

○ O = 0b01

24

In this example:

K = 4B

S = 4

Accessing Data Example: Checking Set

● T = 0b01, I = 0b00,

O = 0b01

● Set 0 has tag 00,

doesn’t match

○ Cache miss!

25

In this example:

K = 4B

S = 4

Accessing Data Example: Loading from Memory

● T = 0b01, I = 0b00,

O = 0b01

● Store block 4 (0b0100)

into the cache in set 0

○ Update Tag

26

In this example:

K = 4B

S = 4

Accessing Data Example: Returning Data

● T = 0b01, I = 0b00,

O = 0b01

● Return data starting at

offset 1

27

In this example:

K = 4B

S = 4

Collisions

● Problem: multiple blocks

map to the same set

○ Collision occurs when

we try to load a block into

a set that already has

data

■ Evict the old block

to make room

○ How can we fix this?

■ Next lecture!

28

Summary: Cache Terminology

● Memory is broken up into aligned

blocks

● Cache is broken up into sets

○ Each set holds one block (for now)

○ Store tag along with data block

○ Sets referenced by their index

● Cache size = number of bytes of

data the cache can hold

○ Number of sets * block size

29

Summary: Address Translation

● Block size = K

○ k = log2(K)

● Cache size = C

● Number of sets = S = C÷K

○ s = log2(S)

● Divide addresses (a) into fields

○ Offset = lowest k bits = a % K

■ Starting location within a

block

○ Index = next s bits = (a÷K) % S

■ Which set the block is in

○ Tag = Remaining bits = (a÷K)÷S

■ Used to distinguish different

blocks with the same index

30

	Slide 1: Caches II
	Slide 2: Administrivia
	Slide 3: Mid-Quarter Updates
	Slide 4: Memory Hierarchy Review
	Slide 5: Memory Hierarchy Review (pt 2)
	Slide 6: Memory Hierarchy Review (pt 3)
	Slide 7: Example Microarchitecture: Intel Core i7
	Slide 8: Caches
	Slide 9: Review Question
	Slide 10: Reading Terminology Review
	Slide 11: Cache Organization: Block Size
	Slide 12: Cache Organization: Block Size (pt 2)
	Slide 13: Cache Organization: Cache Size
	Slide 14: Hash Tables for Fast Lookup
	Slide 15: Cache Organization: Sets
	Slide 16: Memory and Cache Example
	Slide 17: Memory and Cache Example (pt 2)
	Slide 18: Polling Question
	Slide 19: Cache Organization: Sets and Tags
	Slide 20: Memory and Cache Example (pt 3)
	Slide 21: Memory and Cache Example (pt 4)
	Slide 22: Accessing Data
	Slide 23: Accessing Data Example: Before
	Slide 24: Accessing Data Example: T/I/O breakdown
	Slide 25: Accessing Data Example: Checking Set
	Slide 26: Accessing Data Example: Loading from Memory
	Slide 27: Accessing Data Example: Returning Data
	Slide 28: Collisions
	Slide 29: Summary: Cache Terminology
	Slide 30: Summary: Address Translation

