
Caches I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1



Administrivia

● Today

○ HW12 due (11:59pm)

○ Lab2 due (11:59pm)

● Monday, 7/22

○ RD15 due (1pm)

○ HW13 due (11:59pm)

○ Quiz 2 released (11:59pm)

■ Same rules apply as Quiz 1

● Wednesday, 7/24

○ RD16 due (1pm)

○ HW14 due (11:59pm)

2



Quiz 1 Grades Released!

● Regrade requests will open tonight at 11:59pm

● If you received a message about possible academic misconduct, please 

email me

● And even though it’s cheesy…

○ Your success in life is not defined by grades

○ You are not defined by grades

○ We know it seems critically important right now, but we promise, the numbers on a 

transcript will fade with time.

3



Topic Group 3: Scale & Coherence

● How do we make memory 

accesses faster?

● How do programs manage large 

amounts of memory?

● How does your computer run 

multiple programs at once?

Starting with caches, which are 

implemented in hardware.

4



Aside: Units and Prefixes

● Traditional prefixes represent powers of 10, we define new ones for base 2

○ Ex: 1 Kibibyte = 210 bytes ≈ 103 bytes = 1 Kilobyte

● SI prefixes are ambiguous if base 10 or base 2 (does ‘k’ stand for kilo or kibi?)

● IEC prefixes are unambiguously base 2

SI Symbol SI Prefix SI size IEC symbol IEC Prefix IEC Size

K Kilo- 103 Ki Kibi- 210

M Mega- 106 Mi Mebi- 220

G Giga- 109 Gi Gibi- 230

T Tera- 1012 Ti Tebi- 240

P Peta- 1015 Pi Pebi- 250

E Exa- 1018 Ei Exbi- 260

Z Zetta- 1021 Zi Zebi- 270

Y Yotta- 1024 Yi Yobi- 280

5



How to Remember?

● You can always look it up :)

○ It’s on the midterm reference sheet

● Mnemonics

○ Killer Mechanical Giraffe Teaches Pet Extinct Zebra to Yodel

○ Kirby Missed Ganondorf Terribly, Potentially Exterminating Zelda and Yoshi

○ From xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo

■ https://xkcd.com/992/

6

https://xkcd.com/992/


Review Questions

1. Convert the following to or from IEC:

a. 512 Mi-students

b. 233 cats

2. Compute the average memory access time (AMAT) for a system with the 

following properties:

a. Hit time of 2 ns

b. Miss rate of 1%

c. Miss penalty of 300 ns

7



How does execution time grow with SIZE?

int array[SIZE];
int sum = 0;
for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {
sum += array[j];

}
}

8



Actual Data

9



An Analogy

10



Caches

● Cache basics

● Principle of locality

● Memory hierarchies

● Cache organization

● Program optimizations that consider caches

11



Problem: Processor-Memory Bottleneck

“Moore’s Law”

CPU Performance
55%/year
(2X/1.5yr)

DRAM
7%/year
(2X/10yr)

Processor-Memory

Performance Gap

(grows 50%/year)

12



A Very Silly Analogy

13

Problem: memory is slow



A Very Silly Analogy (pt 2)

Solution: caches!

14



Cache 
● Pronounced “cash”

○ Often abbreviated to ‘$”

● English: hidden storage space for provisions, weapons, or treasures

● Computer: Memory with short access time used for the storage of frequently 

or recently used instructions or data

○ I-cache for instructions

○ d-cache for data

○ More generally: Used to optimize data transfers between any system elements 

with different characteristics (network interface cache, I/O cache, etc.)

15



If caches are so much faster, why do we need memory?

● Two common memory technologies

○ DRAM: high-capacity, cheap, energy efficient, but slow

○ SRAM: much faster, but less energy efficient and expensive

● We can’t afford to have all our computer’s memory be SRAM

○ Use DRAM to provide large amounts of memory for cheap

○ Have a small SRAM cache for speed

SRAM DRAM

16



General Cache Mechanics

● Memory

○ Slower, larger, cheaper

○ Partition into “blocks”

● Cache

○ Smaller, faster, more expensive

○ Stores a subset of blocks from 

memory

○ Data is copied in block-sized 

chunks

17



Cache Mechanics: Hit

● Data we need is in block b

● Block b is in the cache

○ Hit!

● Data is returned to the CPU

18



Cache Mechanics: Miss

● Data we need is in block b

● Block b is not in the cache already

○ Miss!

● Block b is fetched from memory

● Block b is written into the cache

19



Cache Mechanics: Miss (pt 2)

● Data we need is in block b

● Block b is not in the cache already

○ Miss!

● Block b is fetched from memory

● Block b is written into the cache

○ Placement policy decides where 

it goes

○ Replacement policy decides what 

we kick out

● Data is returned to the CPU

20



Why Caches Work

● Takes advantage of locality

○ Common patterns in how programs access data

● Temporal locality

○ If a program accesses data once, it’s likely to 

access it again

● Spatial locality

○ If a program accesses some data, it’s likely to 

access other data that’s nearby in memory

How do caches take advantage of this?

21



Locality Example

sum = 0;
for (i = 0; i < n; i++) {

sum += a[i];
}
return sum;

Data

● Temporal: sum, i, and n are 

accessed every loop iteration

● Spacial: consecutive elements of a

Instructions

● Temporal: loop body code

● Instructions: instructions executed 

in sequence

22



Locality Example 1
int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

Access pattern:

Stride?

23



Locality Example 2
int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

Access pattern:

Stride?

24



Locality Example 3
int sum_array_3D(int a[X][Y][Z])
{

int i, j, k, sum = 0;

for (i = 0; i < Y; i++)
for (j = 0; j < Z; j++)

for (k = 0; k < X; k++)
sum += a[k][i][j];

return sum;
}

Access pattern:

25



Cache Performance Metrics

● Miss Rate (MR)
○ Fraction of memory references not found in cache
○ (misses / accesses) = 1 - Hit Rate

● Hit Time (HT)
○ Time to deliver a block in the cache to the processor
○ Includes time to determine whether the block is in the cache

● Miss Penalty (MP)
○ Additional time required because of a miss
○ Total miss time = Hit Time + Miss Penalty

26



Cache Performance

● Average Memory Access Time (AMAT): average time to access data, 

considering both cache hits and misses

○ AMAT = Hit time + Miss Rate × Miss Penalty

(abbreviated AMAT = HT + MR×MP)

27



Practice Questions

1. Processor specs: 200 ps clock, MP of 50 clock cycles, MR of 0.02 

misses/instruction, and HT of 1 clock cycle

A) What is the AMAT (in clock cycles)?

2. Which of these improvements would result in the lowest AMAT?

A) 190 ps clock

B) Miss penalty of 40 clock cycles

C) Miss rate of 0.015 misses/instruction

28



Cache Performance (pt 2)

● Misses have a much larger effect on AMAT than hits!

○ Going to memory could be 100x slower than accessing the cache (measured in 

clock cycles)

● High miss rate or miss penalty hurt AMAT the most

Ex: Assume HT of 1 clock cycle and MP of 100 clock cycles

If HR = 99%, AMAT = _____

If HR = 97%, AMAT = _____

Increasing hit rate by only 2% cut acces time in half!

29



Can we have more than one cache? Yes!

● Why would we want to do that?
○ Avoid going to memory at all costs!

● Typical performance numbers
○ Miss Rate

■ L1: 3-10%

■ L2: very small (likely <1%)

○ Hit Time

■ L1: 4 clock cycles

■ L2: 10 clock cycles

○ Miss Penalty

■ 50-200 cycles for missing in L2 going to main memory)

■ Trend: increasing!

30



An Example Memory Hierarchy

31



Learning About Your Machine

● Linux:

○ lscpu

○ ls /sys/devices/system/cpu/cpu0/cache/index0/

○ Example: cat /sys/devices/system/cpu/cpu0/cache/index*/size

● Windows:

○ wmic memcache get <query> (all values in KB)

○ Example: wmic memcache get MaxCacheSize

● Modern processor specs: http://www.7-cpu.com/

32

http://www.7-cpu.com/


Summary

● Memory Hierarchy

○ Higher levels are faster, smaller, and more expensive

■ Contain the most used data from lower levels

○ Exploits temporal and spatial locality

○ Caches are intermediate levels between memory and the CPU

● Cache Performance

○ Ideal case: data found in cache (hit)

○ Bad case: not found in cache (miss), go to next level in hierarchy

○ Average Memory Access Time (AMAT) = HT + MR × MP

■ Hurt my high miss rate and miss penalty

33


	Slide 1: Caches I
	Slide 2: Administrivia
	Slide 3: Quiz 1 Grades Released!
	Slide 4: Topic Group 3: Scale & Coherence
	Slide 5: Aside: Units and Prefixes
	Slide 6: How to Remember?
	Slide 7: Review Questions
	Slide 8: How does execution time grow with SIZE?
	Slide 9: Actual Data
	Slide 10: An Analogy
	Slide 11: Caches
	Slide 12: Problem: Processor-Memory Bottleneck
	Slide 13: A Very Silly Analogy
	Slide 14: A Very Silly Analogy (pt 2)
	Slide 15: Cache 💰
	Slide 16: If caches are so much faster, why do we need memory?
	Slide 17: General Cache Mechanics
	Slide 18: Cache Mechanics: Hit
	Slide 19: Cache Mechanics: Miss
	Slide 20: Cache Mechanics: Miss (pt 2)
	Slide 21: Why Caches Work
	Slide 22: Locality Example
	Slide 23: Locality Example 1
	Slide 24: Locality Example 2
	Slide 25: Locality Example 3
	Slide 26: Cache Performance Metrics
	Slide 27: Cache Performance
	Slide 28: Practice Questions
	Slide 29: Cache Performance (pt 2)
	Slide 30: Can we have more than one cache? Yes!
	Slide 31: An Example Memory Hierarchy
	Slide 32: Learning About Your Machine
	Slide 33: Summary

