ALL MODERN DIGITAL
Caches | INFRHSTRUCT:)RE
CSE 351 Summer 2024 Jﬂ
Instructor: I [u]
Ellis Haker
Teaching Assistants: A PROTECT SOME
Naama Amiel J R B s
Micah Chang L e
Shananda Dokka J‘”‘i 203
Nikolas McNamee r(——]1 =
Jiawei Huang C -

Administrivia

e Today

o HW12 due (11:59pm)

o Lab2due (11:59pm)
e Monday, 7/22

o RD15 due (1pm)

o HW13 due (11:59pm)

o Quiz 2 released (11:59pm)

m Same rules apply as Quiz 1

e Wednesday, 7/24

o RD16 due (1pm)

o HW14 due (11:59pm)

Quiz 1 Grades Released!

e Regrade requests will open tonight at 11:59pm
e |f you received a message about possible academic misconduct, please

email me

e And even though it’s cheesy...
o Your success in life is not defined by grades
o You are not defined by grades
o We know it seems critically important right now, but we promise, the numbers on a

transcript will fade with time.

Topic Group 3: Scale & Coherence

e How do we make memory
accesses faster? Software Applications
(written in Java, Python, C, etc.)
e How do programs manage large
amounts of memory?
e How does your computer run Programming Languages & Libraries
.) (e.g. Java Runtime Env, C Standard Lib)
multiple programs at once”

Operating System
(e.g. MacOS, Windows, Linux)

Starting with caches, which are
. | ted in hard Hardware
Impiementea in hardware. (e.g. CPU, memory, disk, network, peripherals)

. - . 3— o \L‘. ;: l.: 0
Aside: Units and Prefixes \s\e to'= tev L= 27 Lo

e Traditional prefixes represent powers of 10, we define new ones for base 2
o Ex: 1Kibibyte = 210 bytes = 102 bytes = 1 Kilobyte
e Sl prefixes are ambiguous if base 10 or base 2 (does 'k’ stand for kilo or kibi?)
e |EC prefixes are unambiguously base 2 T pesge ofbun ey "Wlla” n Koy

S| Symbol S| Prefix Sl size IEC symbol IEC Prefix IEC Size
K Kilo- 108 Ki Kibi- 210
M Mega- 106 Mi Mebi- 220
G Giga- 10° Gi Gibi- 230
T Tera- 1012 Ti Tebi- 240
P Peta- 1015 Pi Pebi- 250
E Exa- 1018 Ei Exbi- 260
z Zetta- 1021 Zi Zebi- 270
Y Yotta- 1024 Yi Yobi- 280

How to Remember?

e You can always look it up :)
o It's on the midterm reference sheet

e Mnemonics
o Killer Mechanical Giraffe Teaches Pet Extinct Zebra to Yodel
o Kirby Missed Ganondorf Terribly, Potentially Exterminating Zelda and Yoshi
o From xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
m https://xkcd.com/992/

https://xkcd.com/992/

Review Questions

1. Convert the following to or from IEC: o (7
b | . -

s ; ? rie .

a. 512 Mi-students Wiz 2" 4w 1L \]: ‘A—"\;
33 e 5Pt Phicwdd 2T er-ets

b. 2% cats = 2" 2 T bi-w E’Tj—

"t .
2. Compute the averag(ae\ memory access time (AMAT) for a system with the
following properties: BEA AT = WY+ MR-l
a. Hittime of 2 ns - Zans ¥ O.0\-JUDL.,
b. Miss rate of 1% 2 Zusk By

c. Miss penalty of 300 ns - Fi;!

How does execution time grow with SIZE?

st
int array[SIZE]; d
int sum = 0; o -
for (int i = 0; i < 200000; i++) { =
for (int j = 0; j < SIZE; j++) { [
sum += arrayl[j]; c
})
el
! o
@
>
L
-

SIZE

Actual Data

45
40
))
30 /
25

20
gk ke e

Time

>
e Pl T /
0

0 2000 4000 6000 8000 10000

SIZE

An Analogy

Olympic
National Park

(2}

Olympictasy
National/Forest

(o)

fm 2 hr 53 min

177 miles

Mount Rainier.
National Park:

Centralia

Castle Rock gn{:fc?]rg‘
tori :
o ~ Longview National Forest
ton.
le
ach y
Ri giﬁeld
anzanita B#I\e Sround Hood RiverassBingen
Vancouver L7 a

o
iaribaldi Mt l-good
IPDOk

MtiHood Q

E

) Mt Hood v

ty National Forest

Caches

Cache basics
Principle of locality
Memory hierarchies
Cache organization

Program optimizations that consider caches

Problem: Processor-Memory Bottleneck "= ' Mok
// A~ Lo0Y, wde T

{1 ¥ 4]] \4 9"‘4\"'&
100,000 Moore’s Law v
CPU Performance %M:\?.. sk
10,000 ot oo B5%0fy@ar i i
(2X/1.5yr)
8 s
g 1000
= Ficcoseek Processor-Memory
=
@ 100.. ...
s ‘
10 e R L k ...
DRAM
1 T T T T T 1 7%/year
1980 1985 1990 1995 2000 2005 2010 (2X/10yr)

Year

A Very Silly Analogy

Processor performance,
very fast Bus latency / bandwidth
much slower .
Main
CPU | Reg
Memory

Core 2 Duo:

Can process at least

256 Bytes/cycle Core 2 Duo:

Bandwidth ¥ ONE | DAY- SALE " _"

2 Bytes/cycle s .

Latency
100-200 cycles (30-60ns)

1 Problem: memory is slow

A Very Silly Analogy (pt 2)

Processor performance,

very fast Bus latency / bandwidth
much slower

CPU | Reg

Core 2 Duo:
Can process at least

256 Bytes/cycle Coré 2 Diio: == et

" AT Bandwidth » oue oaY s ".‘_
2 Bytes/cycle # .
Latency S ey

100-200 cycles (30-60ns)

Solution: caches!

Cache &

e Pronounced “cash”
o Often abbreviated to ‘$”
e English: hidden storage space for provisions, weapons, or treasures
e Computer. Memory with short access time used for the storage of frequently

or recently used instructions or data
o l-cache for instructions

o d-cache for data
o More generally: Used to optimize data transfers between any system elements

with different characteristics (network interface cache, I/O cache, etc.)

If caches are so much faster, why do we need memory?

. o><\~f..;4-, L}((H\']rn()‘ Lok Haesy gwe "'\o—b
e Two common memory technologies Wik cow mgia mbu\- wedd

o DRAM: high-capacity, cheap, energy efficient, but slow
o SRAM: much faster, but less energy efficient and expensive

e We can't afford to have all our computer's memory be SRAM
o Use DRAM to provide large amounts of memory for cheap
Have a small SRAM cache for speed

General Cache Mechanics

* Memory Cache 7 9 14 3
o Slower, larger, cheaper
o Partition into “blocks” «
e Cache TS Ve
o Smaller, faster, more expensive o —\
o Stores a subset of blocks from N
memory Memory 0 1 2 3
o Data is copied in block-sized 4 5 6 7
chunks 8 9 10 11
12 13 14 15
L] L]] L]] L] L L

Cache Mechanics: Hit

e Data we need is in block b
e Block b is in the cache

o Hit!
e Data is returned to the CPU

Cache

Memory

Request: 14
7 9 14 3
0 1 2 3
4 5 (7] 7
8 9 10 11
12 13 14 15

Cache Mechanics: Miss

e Datawe needisin block b

Cache
e Block b is not in the cache already
o Miss!
e Block b is fetched from memory
e Block b is written into the cache
Memory

Request: 12

7 9 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

S

Cache Mechanics: Miss (pt 2) u%(-«“ Request: 12
e Data we need is in block b Cache - 5 ” 3
e Block b is not in the cache already

o Miss!
e Block b is fetched from memory 12 Request: 12
e Block b is written into the cache
o Placement policy decides where
it goes Memory 0 1 2 3
o Replacement policy decides what 3 > 6 7
we kick out 8 9 10 11
e Data is returned to the CPU 12 13 14 15
L L] L L L L L L L

Why Caches Work

e Takes advantage of locality
o Common patterns in how programs access data
e Temporal locality
o If a program accesses data once, it’s likely to
access it again
e Spatial locality
o If a program accesses some data, it’s likely to
access other data that’s nearby in memory

How do caches take advantage of this?

block

block

Locality Example

sum = 0;

for (i = 0; i < n; i++) {
sum += al[i];

}

return sum;

Data Instructions
e Temporal: sum, i, and n are e Temporal: loop body code
accessed every loop iteration e Instructions: instructions executed

e Spacial: consecutive elements of a in sequence

Locality Example 1

int sum_array_rows(int a[M][N]) D a[e][e]
{ .
{nE G, 4, sum = 83 Access pattern: 2) a[e][1]
for (i = 0; i < M; i++) 3)f alo]l2]
for (j = 03 j < Nj j++) 4)Lafo][3] |
sum += al[i]1[3]; Stride? 1 5) a[1][@]
return sum; 6) r5‘[1][1]
’ booy b e rmotnce . 7 a[1][2]
¥ vae ewhieblsde Laloe
Moo i o e were . 8){@l1][3]
Layout in Memory 9)l a[2][0]
a d d d a ad d d d a a a 10) 3[2][1]
[ej{fejjfej(feljia1(11|{f21 21y[21|[2]|[2]|[2] 11)f a[2][2]
[el{[21{[21{[3]|fe]|[1]|[2]|[3]1|[e]|{[21]|[2]|[3] 12)| a[2][3]

o\

Locality Example 2

int sum_array_rows(int a[M][N])

{

}

int i, j, sum = 0;

for (j = 05 j < N; j++)
for (i = 0; i < M; i++)
sum += al[il[j];

return sum;

Layout in Memory

Access pattern:

Stride? +J

|5} b—L c.a—cl«.c. T'C(LOM'-’“U-}"\

a
[0]
[0]

a| a
[0]|[©]
[1]]|[2]

a
[©]
[3]

d
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[©]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1)

2)

6)

8)

9)
10))

11)

12)

3)

5)

al0][0]
a[1][0]
a[2][0]
al0][1]
af1][1]
|af2][1]
|afe][2]
a[1][2]
a[2][2]
a[0][3]
a[1][3]
a[2][3]

Locality Example 3 feotly Leb e \wfnww\.

-{int sum_array_3D(int a[X]1[Y]1[Z]) Access pattern:

int i, j, k, sum = 0;

for (i = @3 4 < Y3 i++) /arzue)elidr21el1il lar21e)21l lar21e]3)
for (j = 03 j < Z; j++) /Er:urowr a[11[0][11Ha[110][21Ha[11(0](3]
for (k= 0; k < x; k++) | [alojelelfalelelzifaele)i2iffaloie(3]]‘[;]4“3]
sum += al[k] [1][31, [a LTI _|U|r|au.|| _||.L||—|au.n_1_||¢|r|a|_1.|| _
afo]a](e]ffafe]1][1ifae](1][21fae)(1)3) =R 3] <—x= 2
return Sum; [CA] LT TOUTITEAT LT _II-LIIIClIJ-Il _IILII [CA] LT][3] '(_x=1
} a[o][2](0][|ale][2](1][[a[e][2]2][|a[e)[2][3]] <—x=0
Laiout inM Y . [0 D'S[."-S
a a a a a a a da
5] : . (11 o0
[0] [e]|[e] [e]|[e] (][] [1]
[e] [el|[2]| ° [[alf[2]| * |[21|Cel| ® |[e]| - L3 WY
[e] [3]]|[e] [31|[e] [31|[e] [3]

Cache Performance Metrics

® Miss Rate (MR)

o Fraction of memory references not found in cache

O (misses / accesses) =1 - Hit Rate
e Hit Time (HT)

o Time to deliver a block in the cache to the processor

O Includes time to determine whether the block is in the cache
e Miss Penalty (MP)

O Additional time required because of a miss

O Total miss time = Hit Time + Miss Penalty

Cache Performance

e Average Memory Access Time (AMAT): average time to access data,
considering both cache hits and misses
o AMAT = Hit time + Miss Rate x Miss Penalty
(abbreviated AMAT = HT + MRxMP)

IR ectanty v Vou/ dne & ;W“V-S W
ot M chene of ¢ larway MR

.) prctt % Cor AU % Mo\ NN
Practice Questions o

1. Processor specs: 200 ps clock, MP of 50 clock cycles, MR of 0.02

misses/instruction, and HT of 1 clock cycle

- . - - U\-L
A) What is the AMAT (in clock cycles)? W #2M W= [L0600 = ¥\ f\ﬁ‘a,l
Z egehess - 200/ cles Hhaops

2. Which of these improvements would result in the lowest AMAT?
A) 190 ps clock =rmet o wdees a2 L ¥ 3R ¢4
B) Miss penalty of 40 clock cycles +¢.202-4a =1} u:)c.‘.aﬁ 200 ¥oula= 30 g5
li! Miss rate of 0.015 misses/instruction
4o 01656 = L. 75 erghes “200 9L da = 390%5

Cache Performance (pt 2)

e Misses have a much larger effect on AMAT than hits!
o Going to memory could be 100x slower than accessing the cache (measured in
clock cycles)

® High miss rate or miss penalty hurt AMAT the most
Ex: Assume HT of 1 clock cycle and MP of 100 clock cycles ™= - ¥
If HR = 99%, AMAT = Zadey mMizgol, l+eolloo = 2
If HR = 97%, AMAT = "L‘a&"’ MRLzo o3, \Foow\eo= 4

Increasing hit rate by only 2% cut acces time in half!

Can we have more than one cache? Yes!

e Why would we want to do that?
o Avoid going to memory at all costs!

e Typical performance numbers How widies, o atde
o Miss Rate -rede uou\-g
m L1 3-10%
m L2: very small (likely <1%)
o Hit Time
m L1:4 clock cycles
m L2: 10 clock cycles
o Miss Penalty
m 50-200 cycles for missing in L2 going to main memory)
m Trend: increasing!

<lns 5-10s
1ns on-chip L1

Smaller, cache (SRAM)
faster,
costlier 2

ot Bk 5-10 ns off-chip L2
P cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper 155000,

£ SSD 31 days
per byte local secondary storage Y
10,022'230 ns Disk (local disks) 66 months = 5.5 years
1-150 ms remote secondary storage
(distributed file systems, web servers)

\{

1-15years

Learning About Your Machine

e Linux:

o Tlscpu

o 1s /sys/devices/system/cpu/cpu@/cache/index0/

o Example: cat /sys/devices/system/cpu/cpu@/cache/index*/size
e Windows:

o wmic memcache get <query> (all values in KB)

o Example: wmic memcache get MaxCacheSize
e Modern processor specs: http://www.7-cpu.com/

http://www.7-cpu.com/

Summary

e Memory Hierarchy
o Higher levels are faster, smaller, and more expensive
m Contain the most used data from lower levels
o Exploits temporal and spatial locality
o Caches are intermediate levels between memory and the CPU
e Cache Performance
o Ideal case: data found in cache (hit)
o Bad case: not found in cache (miss), go to next level in hierarchy
o Average Memory Access Time (AMAT) = HT + MR x MP
m Hurt my high miss rate and miss penalty

	Slide 1: Caches I
	Slide 2: Administrivia
	Slide 3: Quiz 1 Grades Released!
	Slide 4: Topic Group 3: Scale & Coherence
	Slide 5: Aside: Units and Prefixes
	Slide 6: How to Remember?
	Slide 7: Review Questions
	Slide 8: How does execution time grow with SIZE?
	Slide 9: Actual Data
	Slide 10: An Analogy
	Slide 11: Caches
	Slide 12: Problem: Processor-Memory Bottleneck
	Slide 13: A Very Silly Analogy
	Slide 14: A Very Silly Analogy (pt 2)
	Slide 15: Cache 💰
	Slide 16: If caches are so much faster, why do we need memory?
	Slide 17: General Cache Mechanics
	Slide 18: Cache Mechanics: Hit
	Slide 19: Cache Mechanics: Miss
	Slide 20: Cache Mechanics: Miss (pt 2)
	Slide 21: Why Caches Work
	Slide 22: Locality Example
	Slide 23: Locality Example 1
	Slide 24: Locality Example 2
	Slide 25: Locality Example 3
	Slide 26: Cache Performance Metrics
	Slide 27: Cache Performance
	Slide 28: Practice Questions
	Slide 29: Cache Performance (pt 2)
	Slide 30: Can we have more than one cache? Yes!
	Slide 31: An Example Memory Hierarchy
	Slide 32: Learning About Your Machine
	Slide 33: Summary

