
Buffer Overflow
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today:

○ HW11 due (11:59pm)

○ Mid-Quarter Survey due (11:59pm)

○ Lab3 released! (due next Friday, 7/26)

● Friday, 7/19

○ RD14 due (1pm)

○ HW12 due (11:59pm)

○ Lab2 due (11:59pm)

■ Reminder: weekend counts as 1 late day

● Quiz 2 released on Monday

2

TA Applications are Open!

● Apply by Monday, 7/22 to TA for Fall

○ https://www.cs.washington.edu/students/ta

○ Same application for all CSE classes (besides intro)

● You are eligible to TA for 351 next quarter!

○ If interested, please also contact Ruth Anderson to let her know you’re interested

3

https://www.cs.washington.edu/students/ta

Lecture Topics

● Memory Layout Review

● Buffer overflow

○ Input buffers on the stack

○ Overflow attacks and code injection

● Exploits Based on Buffer Overflows

● Defenses against buffer overflow

● Societal Impact

4

Review: Memory Layout

● Stack

○ Local variables, procedure context

● Heap

○ Dynamically allocated using malloc()

○ Future lecture topic!

● Statically-allocated data

○ Read/write: Static Data

○ Read-only: Literals

● Instructions

○ Machine code

○ Read-only

5

Memory Allocation Example

char* str = “hello!”;

int main() {
void *p1;
int local = 0;
p1 = malloc(1L << 28); /* 256 MB */
/* Some other code ... */

}

Where does everything go?

6

Review: x86 Stack Frame

● Caller’s stack frame

○ Arguments 7+ for this call

● Current stack frame

○ Return address pushed by call instruction

○ Old frame pointer (optional)

○ Local data

■ Callee-saved registers pushed before

using

■ Caller-saved registers pushed before

calling another function

○ Argument build = arguments 7+ for the next

function

7

Lecture Topics

● Memory Layout Review

● Buffer overflow

○ Input buffers on the stack

○ Overflow attacks and code injection

● Exploits Based on Buffer Overflows

● Defenses against buffer overflow

● Societal Impact

8

What is a Buffer?

● An array used to temporarily store data

○ Typically some input or output

● Example: you’ve probably seen “video buffering”

○ Video data from the internet is written to a buffer before being played

9

Buffer Overflow in a Nutshell

● C does not check array bounds

○ Buffer Overflow = writing past the end of an array

● Characteristics of the Linux memory layout provide opportunities for malicious

programs

○ Stack grows “backwards” in memory

○ Stack used for both data and control flow (return addresses)

○ Data and instructions both stored in memory

10

Buffer Overflow in a Nutshell (pt 2)

● Stack grows down towards lower addresses

● Buffer grows up towards higher addresses

● Result: if we overflow a buffer on the stack,

we will overwrite other data!

Example:

Enter input: hello

No overflow :)

11

Buffer Overflow in a Nutshell (pt 3)

● Stack grows down towards lower addresses

● Buffer grows up towards higher addresses

● Result: if we overflow a buffer on the stack,

we will overwrite other data!

Example:

Enter input: helloabcdef

Buffer overflow :(

12

Buffer Overflow in a Nutshell (pt 4)

● Buffer overflows on the stack can overwrite important data

○ e.g., the return address

○ A clever attacker can use this to their advantage

● Simplest form is stack smashing

○ Overwrite return address to change how a program runs

● More complex forms include code injection

○ Attacker can cause a program to run their own code!

● Why is this a big deal?

○ One of the most common technical causes of security vulnerabilities

■ Social engineering is more common than any technical cause

13

String Library Code

Implementation of Unix function gets()

/* Get string from stdin */
char* gets(char* dest) {

int c = getchar();
char* p = dest;
while (c != EOF && c != '\n') {

*p++ = c;
c = getchar();

}
*p = '\0';
return dest;

}

What could go wrong with this code?

14

String Library Code (pt 2)

Implementation of Unix function gets()

/* Get string from stdin */
char* gets(char* dest) {

int c = getchar();
char* p = dest;
while (c != EOF && c != '\n') {

*p++ = c;
c = getchar();

}
*p = '\0';
return dest;

}

● What if the function reads in more

data than we have space for in

dest?

● Similar problem in other standard

library functions

○ strcpy()

○ scanf(), if given a %s specifier

15

Vulnerable Buffer Code

/* Echo Line */
void echo() {

char buf[8]; // Way too small!
printf(“Enter string: ”);
gets(buf);
puts(buf);

}

void call_echo() {
echo();

}

● gets() writes from stdin to buf
● puts() writes from buf to stdout

● What happens if gets() writes

past the end of buf?

unix:~$./run_echo
Enter string: 123456789012345
123456789012345

unix:~$./run_echo
Enter string: 1234567890123456
Segmentation fault (core dumped)

16

Vulnerable Buffer Code Disassembly
0000000000401146 <echo>:
401146: 48 83 ec 18 sub $0x18,%rsp
... ... # calls printf
401159: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
40115e: b8 00 00 00 00 mov $0x0,%eax
401163: e8 e8 fe ff ff callq 401050 <gets@plt>
401168: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
40116d: e8 be fe ff ff callq 401030 <puts@plt>
401172: 48 83 c4 18 add $0x18,%rsp
401176: c3 retq

0000000000401177 <call_echo>:
401177: 48 83 ec 08 sub $0x8,%rsp
40117b: b8 00 00 00 00 mov $0x0,%eax
401180: e8 c1 ff ff ff callq 401146 <echo>
401185: 48 83 c4 08 add $0x8,%rsp
401189: c3 retq

Return address

17

Vulnerable Code Stack (before gets())

void echo() {
char buf[8];
. . .
gets(buf);
. . .

}

echo:
subq $0x18,%rsp
...
leaq 0x8(%rsp),%rdi
...
call gets
...
addq $0x18,%rsp
retq

call_echo:
...
401180: call echo
401185: addq $0x8,%rsp
...

18

Example #1 (after gets())

void echo() {
char buf[8];
. . .
gets(buf);
. . .

}

echo:
subq $0x18,%rsp
...
leaq 0x8(%rsp),%rdi
...
call gets
...
addq $0x18,%rsp
retq

unix:~$./run_echo
Enter string: 123456789012345
123456789012345

Overflowed buffer, but didn’t corrupt

important data

Every digit N has
the ASCII 0x3N

19

Example #2 (after gets())

void echo() {
char buf[8];
. . .
gets(buf);
. . .

}

echo:
subq $0x18,%rsp
...
leaq 0x8(%rsp),%rdi
...
call gets
...
addq $0x18,%rsp
retq

unix:~$./run_echo
Enter string: 1234567890123456
Segmentation fault (core dumped)

Overwrote the return address!

20

Attack Time

21

Buffer Overflow Attacks: Stack Smashing

● Simpler attack

○ Overwrite the return address

● Usually execute another function in

instruction memory

22

Buffer Overflow Attacks: Stack Smashing (pt 2)

● Simplest common attack

○ Overwrite the return address

● Usually execute another function in

instruction memory

Enter string: <padding><foo>

23

Buffer Overflow Attacks: Code Injection

● Allows attacker to execute

arbitrary code on victim machine!

● Write byte code into the buffer, then

overwrite the return address to

point to that code

24

Buffer Overflow Attacks: Code Injection (pt 2)

● Allows attacker to execute

arbitrary code on victim machine!

● Write byte code into the buffer, then

overwrite the return address to

point to that code

○ When current function returns, it

will execute the code you put in the

buffer!

Enter string: <evil_code><padding>
<address of buf>

25

Practice Question

buggy is vulnerable to stack smashing!

What is the minimum number of characters that

gets must read in order for us to change the return

address to a stack address?

(for example: 0x00 00 7f ff ca fe f0 0d)

A) 27

B) 20

C) 51

D) 54

buggy:
subq $0x40, %rsp
...
leaq 16(%rsp), %rdi
call gets
...

26

Lecture Topics

● Memory Layout Review

● Buffer overflow

○ Input buffers on the stack

○ Overflow attacks and code injection

● Exploits Based on Buffer Overflows

● Defenses against buffer overflow

● Societal Impact

27

Morris Worm (1988)

● First ever internet worm

● Exploited finger server (fingerd), used gets to read the argument sent by

the client

○ Attacked fingerd server with phony argument:

■ Ex: finger "exploit-code padding new-return-addr"

● Invaded ~6000 computers in hours (10% of the internet)

● The author, Robert Morris, was prosecuted

○ First conviction under 1986 Computer Fraud and Abuse

Act

○ Now an MIT professor…

28

Heardbleed (2014)

29

Heardbleed (2014) (pt 2)

30

Heardbleed (2014) (pt 3)

31

Heartbleed Explained

● Exploited vulnerability in OpenSSL

○ Open-source security library

● “Heartbeat” packet: message and length

○ Server echos message back

○ Trusted the given length!

■ Allowed attackers to read contents of

memory

● ~17% of the internet affected

○ GitHub, Yahoo, Amazon Web Services, etc.

By FenixFeather - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=32276981

32

Lecture Topics

● Memory Layout Review

● Buffer overflow

○ Input buffers on the stack

○ Overflow attacks and code injection

● Exploits Based on Buffer Overflows

● Defenses against buffer overflow

● Societal Impact

33

System-Level Protections

● Non-executable memory segments

○ In traditional x86, only “read” and “write” permissions, could execute anything

○ x86-64 added “execute” permissions

■ Only instruction memory marked executable

■ Attempting to execute non-executable memory will cause a segfault

● Randomized stack offsets

○ At start of program, allocate a random amount of stack space

■ Shifts addresses for the rest of the program

■ Addresses will be different every time it’s run

● Pros: automatic (programmer doesn’t have to do anything)

● Cons: requires hardware support, doesn’t stop all attacks (e.g., return to libc)

34

Compiler-Level Protections

● Stack canaries

○ Place special value (“canary”) in the stack just beyond the buffer

■ Check value for corruptio before exiting function

○ GCC implementation: -fstack-protector

○ Pros:

■ Easy to implement

○ Cons:

■ Only detects errors, doesn’t stop them

■ Slow

unix:~$./run_echo
Enter string: 12345678
12345678

unix:~$./run_echo
Enter string: 123456789
*** stack smashing detected ***

35

Programmer-Level Protections

● Avoid using unsafe standard library functions

○ gets(), strcpy(), etc.

■ No way to pass in array size!

○ Most have been replaced with safer alternatives (fgets(), strncpy(), etc.)

● Don’t use scanf()with a %s conversion specifier

○ Use fgets() to read the string

○ Use %ns (where n is the max size you can read in not including the null-

terminator)

● Keep track of array bounds

○ Define macros for array sizes

○ Watch out for off-by-1 errors and integer overflow

36

Programmer-Level Protections (pt 2)

● Alternatively, use another language that does array index bounds check

○ Most modern languages check at runtime

● What if I need a low-level systems language?

○ Rust is a systems language designed with security in mind

■ Does compile-time array bounds checking

● Not always possible, some projects are better suited for C

37

Lecture Topics

● Memory Layout Review

● Buffer overflow

○ Input buffers on the stack

○ Overflow attacks and code injection

● Exploits Based on Buffer Overflows

● Defenses against buffer overflow

● Societal Impact

38

Discussion

Take a few minutes to think about the question, and then share your thoughts with

the class.

● Although it’s not as common as it once was, C is still the default language in

certain areas of the industry (operating systems, embedded systems, etc.).

● Why do we still use C if it’s so insecure?

○ What benefits are there to using C?

○ What kinds of things does C allow us to do that we can’t do in other languages?

○ What might dissuade developers from using another language?

39

Security vs. Functionality

● Not always mutually exclusive, but often in tension

○ “The only system which is truly secure is one which is switched off and unplugged

locked in a titanium lined safe, buried in a concrete bunker, and is surrounded by

nerve gas and very highly paid armed guards. Even then, I wouldn't stake my life

on it.” -Gene Stafford

● Many things we do in systems programming use C features like pointer

casting etc.

○ Even Rust has “unsafe”!

● Security checks incur overhead

40

Two Narratives in C

1. “I think programmers should know enough to not access array elements out

of bounds. It’s a relatively simple check to insert at the language level, and if

you can’t remember to add it, you shouldn’t write C.”

a. Emphasis on the individual

2. “C is an absolutely awful language; why on earth doesn’t it implement bounds

checking? It’s an expense, but a relatively nominal one, and the language

would be so much easier to use.”

a. Emphasis on structures

41

Accessibility and Computer Science

● Is C accessible?

○ “C is good for two things: being beautiful and

creating catastrophic day-0s in memory

management.”

● Is programming accessible?

○ A notoriously difficult task to do correctly (even for experts!)

○ Ideological foundations tend to over-emphasize individuals

● You know how to program. What now?

Unix 6th Edition Source Code

42

Discussion (pt 2)

Discuss the following questions in groups of 2-4. Then we’ll share as a class.

● What do you think of when you hear the word “hacker”? Where did your

beliefs about hacking come from?

● What are some of the possible consequences & objectives of hacking (i.e., to

what ends might someone engage in hacking)?

43

What is a “hacker”?

● Very different from what you see in the

movies!

○ Real hacking is much more tedious

● Stereotype is a single (usually male)

person

○ Emphasizes “rugged individualism”

○ Plays into dominant narratives about who

programmers are

○ Romanticizes crime (though “ethical

hacking” does exist)

● Where do these stereotypes come from?

44

Some history

● So what changed?

○ Between the 1960s-80s, computing culture shifted

■ Focus on individualism

■ Competition (think hackathons, etc.)

■ Higher barriers to entry (specialized CS degrees)

○ These stereotypes were pushed to turn programing into a “legitimate” science

● The “hacker” stereotype was a part of this cultural shift!

● Programming used to be thought of as “women’s

work”

○ Played into gender stereotypes: tedious, detail-

oriented work

45

Think this is cool?

● You’ll love Lab 3 :)

● Take CSE 484 (Security)

○ 1st lab is a more in-depth version of Lab 3

● More examples in bonus slides

○ Talk to Tadayoshi Kohno or Franzi Roesner if you want to know more about these

● Optional readings on Ed

● Nintendo fun!

○ Flappy bird in Mario: https://www.youtube.com/watch?v=hB6eY73sLV0

46

https://www.youtube.com/watch?v=hB6eY73sLV0

BONUS SLIDES
You won’t be tested on this material, but it’s interesting nonetheless :)

47

Hacking Cars (2010)

● UW CSE research demonstrated wirelessly hacking a car using buffer overflow

○ http://www.autosec.org/pubs/cars-oakland2010.pdf

● Overwrote the onboard control system’s code

○ Disable brakes, unlock doors, turn engine on/off

48

http://www.autosec.org/pubs/cars-oakland2010.pdf

Hacking DNA Sequencing Tech (2017)

● DNA Sequencer reads in DNA, encodes in binary, stores in a buffer

○ Potential for malicious code to be encoded in DNA!

○ Attacker can gain control of DNA sequencing machine when malicious DNA is read

Ney et al. (2017): https://dnasec.cs.washington.edu/

Computer Security and Privacy in DNA Sequencing
Paul G. Allen School of Computer Science & Engineering, University of Washington

49

https://dnasec.cs.washington.edu/

	Slide 1: Buffer Overflow
	Slide 2: Administrivia
	Slide 3: TA Applications are Open!
	Slide 4: Lecture Topics
	Slide 5: Review: Memory Layout
	Slide 6: Memory Allocation Example
	Slide 7: Review: x86 Stack Frame
	Slide 8: Lecture Topics
	Slide 9: What is a Buffer?
	Slide 10: Buffer Overflow in a Nutshell
	Slide 11: Buffer Overflow in a Nutshell (pt 2)
	Slide 12: Buffer Overflow in a Nutshell (pt 3)
	Slide 13: Buffer Overflow in a Nutshell (pt 4)
	Slide 14: String Library Code
	Slide 15: String Library Code (pt 2)
	Slide 16: Vulnerable Buffer Code
	Slide 17: Vulnerable Buffer Code Disassembly
	Slide 18: Vulnerable Code Stack (before gets())
	Slide 19: Example #1 (after gets())
	Slide 20: Example #2 (after gets())
	Slide 21: Attack Time
	Slide 22: Buffer Overflow Attacks: Stack Smashing
	Slide 23: Buffer Overflow Attacks: Stack Smashing (pt 2)
	Slide 24: Buffer Overflow Attacks: Code Injection
	Slide 25: Buffer Overflow Attacks: Code Injection (pt 2)
	Slide 26: Practice Question
	Slide 27: Lecture Topics
	Slide 28: Morris Worm (1988)
	Slide 29: Heardbleed (2014)
	Slide 30: Heardbleed (2014) (pt 2)
	Slide 31: Heardbleed (2014) (pt 3)
	Slide 32: Heartbleed Explained
	Slide 33: Lecture Topics
	Slide 34: System-Level Protections
	Slide 35: Compiler-Level Protections
	Slide 36: Programmer-Level Protections
	Slide 37: Programmer-Level Protections (pt 2)
	Slide 38: Lecture Topics
	Slide 39: Discussion
	Slide 40: Security vs. Functionality
	Slide 41: Two Narratives in C
	Slide 42: Accessibility and Computer Science
	Slide 43: Discussion (pt 2)
	Slide 44: What is a “hacker”?
	Slide 45: Some history
	Slide 46: Think this is cool?
	Slide 47: BONUS SLIDES
	Slide 48: Hacking Cars (2010)
	Slide 49: Hacking DNA Sequencing Tech (2017)

