Arrays, Structs & Alignment
CSE 351 Summer 2024

Dad, can 1 have classes?

Instructor:
Ellis Haker
Dad: No, we have

Teaching Assistants: classes at home.

Naama Amiel
Micah Chang
Shananda Dokka

Nikolas McNamee
Jiawei Huang Classes at heme: struct

Administrivia

e Today

(@)

(@)

HW10 due (11:59pm)
Mid-Quarter Survey out on Canvas
m Part of your participation
grade

e Wednesday, 7/17

(@)

(@)

(@)

RD13 due (1pm)

HW11 due (11:59pm)
Mid-Quarter Survey due
(11:59pm)

e Friday, 7/19
o RD14 due (1pm)
o HW12 due (11:59pm)
o Lab2due (11:59pm)
e Quiz 2 starts next Monday!
o Due the following week

Layers of Computing Revisited

e Back to Hardware for today -
Software Applications
o How are compound data types (written in Java, Python, C, etc.)
(arrays, structs) stored in memory?
o How do we get individual

elements/fields out of them? Programming Languages & Libraries
(e.g. Java Runtime Env, C Standard Lib)

e Why now? e p——————

o Knowing a little about assembly Operating System
will help you understand this
o Will be helpful for future lectures

(e.g. MacOS, Windows, Linux)

Hardware
(e.g. CPU, memory, disk, network, peripherals)

Review Questions

Both questions questions use the following code:

(s g8 .
struct 11_node { l'fé-b-‘-o-\\ west \Z\ML)ﬁ&*“"'\
long data;
struct ll_nod@tnext;
} nl, n2; kel - N
’ , \) ¢ Iy Cor o &\v':l'ﬂ-ﬂ-, P V5 C'W Qo:m\'fﬁ

1. How much space (in bytes) does one instance of struct 11_node take?

2. Which of the following statements are syntactically valid?
nl.next = &n2;/
EOMERILS 2 A hhat St
nl.next->data = 3333/

D) (&n2)->next->nextmpdata = 451 ;%
— o Lty Vg, o~ o\'u\,‘l-'-f.-.»t-cu\la \-u-ﬁ

Lecture Topics

e Arrays
o Array review
o Arrays inC
o Multidimensional (nested) arrays
o Multilevel arrays
e Structs
o StructsinC
o Struct memory layout
o Alignment

Arrays start at 0

‘\ MATLAB
QY
.

Arrays start at 1

O Perl

Arrays can start

wherever “_(V)_/" |

Arrays start at 4,
stop at 6, restart
at 1, stop again
at 3, restart at 7
then continue on

Recap: Arrays

e T A[N] — array A of type T and length N
o Contiguously allocated region of Nxsizeof (T) bytes
o Identifier A evaluates to the address of the array (type Tx*)

char msg[12];

! t

msg msg+12

int val[4];
f f t } t
val val+4 val+8 val+12 val+le

double a[3];

} } f f

a at8 at+l6 a+24

Recap: Array Accesses

int x[5]; 3 - 1 5 a = starting address of x
I aIf-l 018 c.-+T12 0+T16 a+T2@
Expression Type Value
X intx a
Y behS x[4] int >
ie-—{\ x + 1 intx* a + 4
___y&x[ﬂ wik % —f &8
':;;"" L _»*(x + 1) W =3
40 x[5] RS 277 S\hever (g o AV o

26

Arrays in Memory Example

// arrays of ZIP code digits e Each array is contiguous, but multiple
e @etimsialsll = L Ly Oy 0y 2, T I arrays are not guaranteed to be
int uw[5] ={9, 8 1, 9, 5 }; . : |
int princeton[5] = { 0, 8, 5, 4, 0 }: contiguous with each other!
7
int columbia[5]; 3 7 1 9 5
16 20 24 28 32
Initialization list .
int uw[5]; 3 7 1 9 5
40 44 48 52 56
int princeton[5]; 3 7 1 9 5

f } t f f

T2 76 80 84 88

C Details: Arrays and Pointers

e Array variables are almost identical to pointers
o char* stringandchar[] string are nearly identical declarations
o Subtle differences: initialization, sizeof (), etc.
e An array name is an expression, not a variable!
o Evaluates to the address of the first (0") element
o Translates to a label in assembly
m Doesn’t store the address in a variable (unlike a pointer)
m Read-only, can’t re-assign array hame

C Details: Arrays and Functions

e Allocated on the stack, only allocated while scope is valid

(@)

Ex: What’s wrong with this code?

charx foo() {
char string[32];

return string;

}

e An array is passed into a function as a pointer

@)

@)

Can no longer use sizeof ()! _ ,
Ex. Really just an intx*

int foo(int ar[], unsigned int size)

—

Need to pass in the
size!

Lecture Topics

e Arrays

o Array review

o Arraysin C

o Multidimensional (nested) arrays
Multilevel arrays
e Structs

o StructsinC

o Struct memory layout

o Alignment

(@)

Nested Array Example

LoV sf\fi""\l/ 0\' an Il as "WﬁbaL M:.S“
int seal[4][5] =
{{ 9, 8, 1, 9, 5

)
)
)

’
, 1
’

e Multidimensional (i.e. “nested”) array
o seaevaluatesto an int*x*
e What's the layout in memory?

Nested Array Example (pt 2)

int seal[4][5] =
{9, 8, 1, 9, 5 J, e Row-major order: each row stored contiguously

%:: :: i: g: g i: o Guaranteed (in C)
{9, 8 1, 1, 5 }};
seal[3][2]
Row 0 Row 1 Row 2 Row 3
Z

Multi-Dimensional (Nested) Arrays

e Declaration: T A[R][C]; Conceptual view:
o 2D array of type T — -
o Rrows, C columns

.) A[0][0] s s e A[0] [C-1]
o Each elementrequires sizeof (T) bytes
e How big is this array? . y
o RxCxsizeof(T) bytes * *

e Arrangement: row-major ordering
int A[R][C]

A
[@]
[@]

A

[e]
[C-1]

[1]
[@]

[1]

[C-1]

Nested Array Row Access

e GivenT A[R][C] Conizedt (F) = afze of ~ cann

o A[1] isthe array of elements in row Fuws ot ceuk ques, 56 ERES
o Pointer arithmetic: o i = iral oY ren
m A s the address of the start of the array

m Starting address of row i = A + i*xCxsizeof(T)
int A[R][C]

A[0] Al] A[R-1]
A A A
4 A 4 N a4 I
A A A A A A
ej|...lm@ /...l ... 00i1]. .. 0R-2] . . . |[R-1]
[0] [c-1] [0] [c-1] [0] [c-1]
t 1 t

A A + ixCx4 A + (R-1)*Cx4

Nested Array Element Access D i) = e oflulk
i' 4 21T D = cffart < -\-u'-'-‘;"

HL o

e Given T A[R][C]

o A[i]1[j] is element j of row i so ollasb—ob [0V =
® [i][j]=Mem[A + (i*C + j)*sizeof(T)] i v C ‘.‘7;'::.,0‘[’(73 *"]""'ch ()
o Address of row i + offset of element j = (i -L’«-;\ - aiaek (1)
int A[R][C]
A[0] Ali] A[R-1]
A N A
4 N 4 A 4 A
A A A A A
el | ...l l...l...0 G1l...]...lr11 ... |R-11
[o] [c-1] [3] [e] [c-1]
f 1 f
A A + ixCx4 A + (R-1)*Cx4

A+ (i*xC+])*4

Lecture Topics

e Arrays
o Array review
o Arraysin C
o Multidimensional (nested) arrays
o Multilevel arrays
e Structs
o StructsinC
o Struct memory layout
o Alignment

Uiy 0o hew Tow ahvres 20 eiras”

Multilevel Array

// 1-D arrays of 1ints // Multi-level array
int columbial[5] = { 1, 0, 0, 2, 7 }; int* univ[3] = {uw,
int uw[5] ={9, 8 1, 9, 5 }; columbia, princeton};
int princeton[5] = { 0, 8, 5, 4, 0 };
columbia
e Variable univ is an array of . L3 ¥ U ¥ rt 1 9 1 o
univ
pointers 20 16 20 24 28 32
e Each pointer points to an =
fant 16 3 7 1 9 5
array of ints = f f J f

o Could be different lengths! wt@ton 44 48 52 56
A io—rjng.,&, N(HD"« - - . ; -

Multilevel Array Element Access

columbia
3 7 1 9 5
. A T T lr A
— 16 20 24 28 32
40
uw
16 3 7 1 9 5
A
72 40 ;L- ig ;L ;L
princeton
3 7 1 9 5
) 1 i ‘ $
72 76 80 84 88

e EX univ[1l][3]

o Requires two memory reads. 1) to get pointer to row array. 2) to get element.
O Mem[Mem[univ + 1*x8] + 3%x4]

TLDR: Array Element Accesses

e Syntax looks the same, but memory layout is different

Multidimensional Multilevel
Row 0 Row 1 Row 2 Row 3 columbia

3 | 7] 1| 9 | s

9/8/1/9/519|8|1/0|5]9(8|1(0|3|9(8|1|1(5 univ<6 J@ 21; 21; .Jz

40

U T
ATATI3T = Mem[A+(i%C+)xsizeof (T)] N —

A A A R

T2 76 80 84 88

A[1][3] =

Mem[Mem[A+i*ptr_size]+j*sizeof(T)]

Lecture Topics

e Arrays
o Array review
o Arraysin C
o Multidimensional (nested) arrays
o Multilevel arrays
e Structs
o StructsinC
o Struct memory layout
o Alignment

Me, who mostly has experience with Java
and OOP, trying out C and just using
structs and functions:

Oh, my God. | get it.

made with mematic

Structs in C

e User-defined compound data type - structured group of variables
Kinda like a Java object, but no methods or inheritance, just fields

O

Example:

s

struct album {

char*x title;
char*x artist;
int year_released

)

struct

albuml.
albuml.
albuml.

struct

album2.
album2.
album2.

album albuml;

title = “Heavy Rocks”;
artist = “Boris”;
year_released = 2002;

album album2;

title = “Heathen”;
artist = “Thou”;
year_released = 2014;

Struct Definition struct album 1
charx title;
e Does not declare a variable, just defines the type ::ir;ezit:iéased,
e Variable typeis “struct <name>” BN)

o have to write “struct” every time :(

e Variable declarations are like any other data type:
struct album albuml; // instance

struct album*x a_ptr; // pointer
struct album playlist[5]; // array

Remember the
semicolon!

e Can also combine struct definitions and instance declarations:

struct album { 3*“*%' el 2
e o o gc - CH Y
} a, *ptr = &a; 5Lrp.¢.‘_ V\\vtl‘w- 0—}

st of el e > Rl

Typedef in C

e A way to create an alias for another data type:
O typedef <data type> <alias>;
o Alias can be used interchangeably with the original data type
e Example: typedef unsigned long ul;
unsigned long x = 12131989;
ul x = 12131989;

e Can combine definition and typedef - don’t have to type “struct” every time

struct a
/% fiilds y typedef struct L _1 |

}s - fislds [Canomt
’) struct name
typedef struct a album; } album;

Scope of Struct Definition

e Why is the placement of a struct definition important?

o C compileris dumb, reads through file top—bottom

o Declaring a variable creates space for it somewhere
m Without type definition, program doesn’t know how much space allocate!

e Structs follow normal C scope rules
e In practice, almost always define at the top of a file

Side note: similar rules apply to functions in C. Must define before they’'re used!

Accessing Struct Fields struct album {

charx title;

. . o char* artist;
e Given a struct instance, use the ‘.’ operator int year_released;

struct album al; b5
al.title = “Deathconsciousness?”;

e Givena Qointer to a struct:
struct album* pl = &al;
o Two equivalent options:
m Dereference, then use ‘.’
(¥al).artist = “Have a Nice Life”;
m Use'->’
pl->year_released = 2008;

Aside: Java

e An instance of a Java class is like a pointer (“reference”) to a struct containing

the fields
o SoJava’'s x.fislike C's x->f
o Ignoring methods and inheritance, that’s a future lecture!

e Arrays are similar. Allocated elsewhere, variable is a pointer to the array

Lecture Topics

e Arrays

o Array review

o Arraysin C

o Multidimensional (nested) arrays
Multilevel arrays
e Structs

o StructsinC

o Struct memory layout

o Alignment

(@)

Struct Representation

struct album {
charx title;
char* artist;
int year_released;

title artist year_released
0 8 16 20

I

e Contiguously allocated in memory
e Fields ordered according to declaration order

o Even if another ordering would be more efficient!

o Why? Easier to debug, programmer can predict what offsets fields are at
e Compiler determines size + position of fields

o Machine-level program has no understanding of structs

Accessing Struct Fields (pt 2)

struct album {

charx title;

char* artist;

int year_released;
}a, p = &a;

title artist year_released
0 8 16 20

e Compiler knows the offset of each field

get_year:
pointer r 1in %rdi
movl 16(%rdi), %eax
ret

int get_year(struct albumx p) {
return p->year_released;

\ 4

}

Pointers to Struct Fields

struct album {

charx title;

title

artist year_released

char* artist;
int year_released;
} a, p = &a;

8 16

e We can get the addresses of fields within a struct!

intx get_year_ptr(struct album*x p) {
return &(p->year_released);

}

\ 4

get_year_ptr:
pointer r 1in %rdi
leaq 16(%rdi), %rax
ret

20

Recap: Alignment

e Primitive-type data is stored at a starting

address that is a multiple of its size
o Required on some systems, advised in x86

e Why?... Performance
o Allows hardware optimizations
m Some (non-x86) hardware will not work
without it
o Speeds up memory accesses (future lecture!)

64-bit
data

Addr

0000

32-bit
data

Addr

0000

Bytes

Addr

0008

Addr

0004

Addr

0008

Addr

0012

Addr.
(hex)

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0A
0x0B
0x0C
0x0D
Ox0E
OxOF

Alignments in x86-64

e Primitive of K bytes must have an address that is divisible by K
e Useful Fact: if a number is divisible by 2", then its binary representation will

endinn0’'s EeEeRLs Size (bytes) Address
Uu_};.__,\ char 1 No restrictions
o \ short 2 Lowest bit is 0: ©b...0
LA G int, float 4 Lowest 2 bits are 0: 0b...00
long, double 8 Lowest 3 bits are 0: 0b...000
long double 16 Lowest 4 bits are 0: 0b...0000

Alignment in Structs struct S1 {

char c;
int i[2];

e Each field must be aligned to the size of its data type double v

o Internal fragmentation: unused space between fields to that | 4
each field is aligned

Unaligned

c |i[e] i[1] v

0 1 9

Aligned

0 4 16

How can we minimize internal fragmentation?

Alignment in Structs (pt 2) struct S1 {

double v;
e Internal fragmentation: unused space between fields to ZE:;E] ;
that each field is aligned } ’
o Changing ordering of fields can reduce the amount of padding
needed
Before
0 4 16
After

e i[0] i[1] C

Alignment in Structs (pt 3) struct S1 {

double v;
int i[2];

e Within struct: fields must be aligned to the size of their types e e

e Overall struct }
o Must be aligned to K.,
m K. = largest alignment requirement of any field
o Add external fragmentation at the end of the struct to maintain alignment

Before
Y 9[0] i[1] €
0 8 16
After

0 8 16 17

Why External Fragmentation?

e Arrays of structs

o If overall structure is aligned to K

for every element in the array

max?

struct S1 {
double v;
int i[2];
char c;
each field will be aligned | }

al0]

all]

a+0

a+24

at48 at’/2

1i[0]

atz24

at+32

a+40 ///ﬂ a+48

external fragmentation

Alignment of Structs (pt 4)

e Compiler will do the following:
o Maintain the order of fields specified in the C code
o Addinternal fragmentation to preserve alignment of fields
o Add external fragmentation to preserve alignment of the overall struct

Programming With Structs Tips

e Because of padding, size of a struct != the sum of the sizes of each field
o Use sizeof () to get the true size
e To save space, declare larger fields first

struct s { struct s {
char c; int i
int 1i; — char c;
char d; char d;
+ +
c i d i cld

Practice Question

1. Minimize the size of the struct by re-ordering the fields.

struct old { struct new{

int 1; ow¥ o .| 8B

short s[3]; Lk 5 | 4%

charx c; Ao £+ 5 | 4%

float f; Mk 5[3]; |63 ley, \,,_L,\;S.,...Lh_l___
s s

1. sizeof(struct old) ==32 B. What sizeof(struct new)?
A) 22 bytes : T \s(:l\st')\st?ll ' e.zssreqw-\

@4 bytes \0 —= T = e J-:— {"rﬁu"sv\‘\‘h
C) 28 bytes
D) 32 bytes

Summary: Arrays

e Contiguously allocated

e Array name evaluates to starting address
o Not a variable! Becomes a label in assembly

e Multidimensional arrays stored in row-major order: T A[R] [C]
o A[i] =arrayofrowi=A + i*Cxsizeof(T)
o A[i][j] =elementjofrowi=Mem[A + (i*xC + j)*sizeof(T)]
e Multilevel arrays are arrays of pointers to other arrays: Tx A[R] = {...}
o A[i] =Mem[A + di*sizeof(pointer)]
o A[i][j] =Mem[Mem[A+i*sizeof(pointer)] + j*sizeof(T)]

Summary: Structs

e User defined types containing fields
o Fields allocated in order declared by programmer
e Accessing Fields
o For an instance of the struct, use .
o For a pointer, use ->
m Equivalent to * (dereference) and then .
e Compiler adds padding to maintain alignment
o Each field must be aligned to its size: add internal fragmentation
o Struct must be aligned to K,,: add external fragmentation
o Minimize fragmentation by ordering fields from largest to smallest in C code

	Slide 1: Arrays, Structs & Alignment
	Slide 2: Administrivia
	Slide 3: Layers of Computing Revisited
	Slide 4: Review Questions
	Slide 5: Lecture Topics
	Slide 6: Recap: Arrays
	Slide 7: Recap: Array Accesses
	Slide 8: Arrays in Memory Example
	Slide 9: C Details: Arrays and Pointers
	Slide 10: C Details: Arrays and Functions
	Slide 11: Lecture Topics
	Slide 12: Nested Array Example
	Slide 13: Nested Array Example (pt 2)
	Slide 14: Multi-Dimensional (Nested) Arrays
	Slide 15: Nested Array Row Access
	Slide 16: Nested Array Element Access
	Slide 17: Lecture Topics
	Slide 18: Multilevel Array
	Slide 19: Multilevel Array Element Access
	Slide 20: TLDR: Array Element Accesses
	Slide 21: Lecture Topics
	Slide 22: Structs in C
	Slide 23: Struct Definition
	Slide 24: Typedef in C
	Slide 25: Scope of Struct Definition
	Slide 26: Accessing Struct Fields
	Slide 27: Aside: Java
	Slide 28: Lecture Topics
	Slide 29: Struct Representation
	Slide 30: Accessing Struct Fields (pt 2)
	Slide 31: Pointers to Struct Fields
	Slide 32: Recap: Alignment
	Slide 33: Alignments in x86-64
	Slide 34: Alignment in Structs
	Slide 35: Alignment in Structs (pt 2)
	Slide 36: Alignment in Structs (pt 3)
	Slide 37: Why External Fragmentation?
	Slide 38: Alignment of Structs (pt 4)
	Slide 39: Programming With Structs Tips
	Slide 40: Practice Question
	Slide 41: Summary: Arrays
	Slide 42: Summary: Structs

