
Arrays, Structs & Alignment
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Today

○ HW10 due (11:59pm)

○ Mid-Quarter Survey out on Canvas

■ Part of your participation

grade

● Wednesday, 7/17

○ RD13 due (1pm)

○ HW11 due (11:59pm)

○ Mid-Quarter Survey due

(11:59pm)

● Friday, 7/19

○ RD14 due (1pm)

○ HW12 due (11:59pm)

○ Lab2 due (11:59pm)

● Quiz 2 starts next Monday!

○ Due the following week

2

Layers of Computing Revisited

● Back to Hardware for today

○ How are compound data types

(arrays, structs) stored in memory?

○ How do we get individual

elements/fields out of them?

● Why now?

○ Knowing a little about assembly

will help you understand this

○ Will be helpful for future lectures

3

Review Questions

Both questions questions use the following code:

struct ll_node {
long data;
struct ll_node* next;

} n1, n2;

1. How much space (in bytes) does one instance of struct ll_node take?

2. Which of the following statements are syntactically valid?

A) n1.next = &n2;

B) n2->data = 351;

C) n1.next->data = 333;

D) (&n2)->next->next.data = 451;

4

Lecture Topics

● Arrays

○ Array review

○ Arrays in C

○ Multidimensional (nested) arrays

○ Multilevel arrays

● Structs

○ Structs in C

○ Struct memory layout

○ Alignment

5

Recap: Arrays

● T A[N] → array A of type T and length N

○ Contiguously allocated region of N*sizeof(T) bytes

○ Identifier A evaluates to the address of the array (type T*)

6

Recap: Array Accesses
a = starting address of x

Expression Type Value

x int* a

x[4] int 5

x + 1 int* a + 4

&x[2]

*(x + 1)

x[5]

7

Arrays in Memory Example

// arrays of ZIP code digits
int columbia[5] = { 1, 0, 0, 2, 7 };
int uw[5] = { 9, 8, 1, 9, 5 };
int princeton[5] = { 0, 8, 5, 4, 0 };

Initialization list

● Each array is contiguous, but multiple

arrays are not guaranteed to be

contiguous with each other!

8

C Details: Arrays and Pointers

● Array variables are almost identical to pointers

○ char* string and char[] string are nearly identical declarations

○ Subtle differences: initialization, sizeof(), etc.

● An array name is an expression, not a variable!

○ Evaluates to the address of the first (0th) element

○ Translates to a label in assembly

■ Doesn’t store the address in a variable (unlike a pointer)

■ Read-only, can’t re-assign array name

9

C Details: Arrays and Functions

● Allocated on the stack, only allocated while scope is valid

○ Ex: What’s wrong with this code?

char* foo() {
char string[32];
. . .
return string;

}

● An array is passed into a function as a pointer

○ Can no longer use sizeof()!

○ Ex:

int foo(int ar[], unsigned int size)

Really just an int*

Need to pass in the

size!

10

Lecture Topics

● Arrays

○ Array review

○ Arrays in C

○ Multidimensional (nested) arrays

○ Multilevel arrays

● Structs

○ Structs in C

○ Struct memory layout

○ Alignment

11

Nested Array Example

int sea[4][5] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

● Multidimensional (i.e. “nested”) array

○ sea evaluates to an int**

● What’s the layout in memory?

12

Nested Array Example (pt 2)

int sea[4][5] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

sea[3][2]

● Row-major order: each row stored contiguously
○ Guaranteed (in C)

13

Multi-Dimensional (Nested) Arrays

● Declaration: T A[R][C];
○ 2D array of type T

○ R rows, C columns

○ Each element requires sizeof(T) bytes

● How big is this array?

○ R*C*sizeof(T) bytes

● Arrangement: row-major ordering

Conceptual view:

14

Nested Array Row Access

● Given T A[R][C]

○ A[i] is the array of elements in row i

○ Pointer arithmetic:

■ A is the address of the start of the array

■ Starting address of row i = A + i*C*sizeof(T)

15

Nested Array Element Access

● Given T A[R][C]

○ A[i][j] is element j of row i

● [i][j] = Mem[A + (i*C + j)*sizeof(T)]

○ Address of row i + offset of element j

16

Lecture Topics

● Arrays

○ Array review

○ Arrays in C

○ Multidimensional (nested) arrays

○ Multilevel arrays

● Structs

○ Structs in C

○ Struct memory layout

○ Alignment

17

Multilevel Array

// 1-D arrays of ints
int columbia[5] = { 1, 0, 0, 2, 7 };
int uw[5] = { 9, 8, 1, 9, 5 };
int princeton[5] = { 0, 8, 5, 4, 0 };

// Multi-level array
int* univ[3] = {uw,
columbia, princeton};

● Variable univ is an array of

pointers

● Each pointer points to an

array of ints

○ Could be different lengths!

18

Multilevel Array Element Access

● Ex: univ[1][3]

○ Requires two memory reads. 1) to get pointer to row array. 2) to get element.

○ Mem[Mem[univ + 1*8] + 3*4]

19

TLDR: Array Element Accesses

● Syntax looks the same, but memory layout is different

Multidimensional

A[i][j] = Mem[A+(i*C+j)*sizeof(T)]

Multilevel

A[i][j] =
Mem[Mem[A+i*ptr_size]+j*sizeof(T)]

20

Lecture Topics

● Arrays

○ Array review

○ Arrays in C

○ Multidimensional (nested) arrays

○ Multilevel arrays

● Structs

○ Structs in C

○ Struct memory layout

○ Alignment

21

Structs in C

● User-defined compound data type - structured group of variables
○ Kinda like a Java object, but no methods or inheritance, just fields

Example:

struct album {
char* title;
char* artist;
int year_released;

};

struct album album1;
album1.title = “Heavy Rocks”;
album1.artist = “Boris”;
album1.year_released = 2002;

struct album album2;
album2.title = “Heathen”;
album2.artist = “Thou”;
album2.year_released = 2014;

22

Struct Definition struct album {
char* title;
char* artist;
int year_released;

};

Remember the

semicolon!

● Does not declare a variable, just defines the type

● Variable type is “struct <name>”

○ have to write “struct” every time :(

● Variable declarations are like any other data type:

struct album album1; // instance
struct album* a_ptr; // pointer
struct album playlist[5]; // array

● Can also combine struct definitions and instance declarations:

struct album {
. . .

} a, *ptr = &a;

23

Typedef in C

● A way to create an alias for another data type:

○ typedef <data type> <alias>;

○ Alias can be used interchangeably with the original data type

● Example: typedef unsigned long ul;

unsigned long x = 12131989;
ul x = 12131989;

● Can combine definition and typedef - don’t have to type “struct” every time

struct a {
/* fields */

};
typedef struct a album;

==
typedef struct {

/* fields */
} album;

Can omit

struct name

24

Scope of Struct Definition

● Why is the placement of a struct definition important?

○ C compiler is dumb, reads through file top→bottom

○ Declaring a variable creates space for it somewhere

■ Without type definition, program doesn’t know how much space allocate!

● Structs follow normal C scope rules

● In practice, almost always define at the top of a file

Side note: similar rules apply to functions in C. Must define before they’re used!

25

Accessing Struct Fields struct album {
char* title;
char* artist;
int year_released;

};

● Given a struct instance, use the ‘.’ operator

struct album a1;

a1.title = “Deathconsciousness”;

● Given a pointer to a struct:

struct album* p1 = &a1;

○ Two equivalent options:

■ Dereference, then use ‘.’

(*a1).artist = “Have a Nice Life”;

■ Use ‘->’

p1->year_released = 2008;

26

Aside: Java

● An instance of a Java class is like a pointer (“reference”) to a struct containing

the fields

○ So Java’s x.f is like C’s x->f

○ Ignoring methods and inheritance, that’s a future lecture!

● Arrays are similar. Allocated elsewhere, variable is a pointer to the array

27

Lecture Topics

● Arrays

○ Array review

○ Arrays in C

○ Multidimensional (nested) arrays

○ Multilevel arrays

● Structs

○ Structs in C

○ Struct memory layout

○ Alignment

28

Struct Representation

struct album {
char* title;
char* artist;
int year_released;

};

● Contiguously allocated in memory

● Fields ordered according to declaration order

○ Even if another ordering would be more efficient!

○ Why? Easier to debug, programmer can predict what offsets fields are at

● Compiler determines size + position of fields

○ Machine-level program has no understanding of structs

29

Accessing Struct Fields (pt 2)

struct album {
char* title;
char* artist;
int year_released;

} a, p = &a;

● Compiler knows the offset of each field

int get_year(struct album* p) {
return p->year_released;

}

get_year:
pointer r in %rdi
movl 16(%rdi), %eax
ret

30

Pointers to Struct Fields

struct album {
char* title;
char* artist;
int year_released;

} a, p = &a;

● We can get the addresses of fields within a struct!

int* get_year_ptr(struct album* p) {
return &(p->year_released);

}

get_year_ptr:
pointer r in %rdi
leaq 16(%rdi), %rax
ret

31

Recap: Alignment

● Primitive-type data is stored at a starting

address that is a multiple of its size

○ Required on some systems, advised in x86

● Why?... Performance

○ Allows hardware optimizations

■ Some (non-x86) hardware will not work

without it

○ Speeds up memory accesses (future lecture!)

32

Alignments in x86-64

● Primitive of K bytes must have an address that is divisible by K

● Useful Fact: if a number is divisible by 2n, then its binary representation will

end in n 0’s Data Type Size (bytes) Address

char 1 No restrictions

short 2 Lowest bit is 0: 0b…0

int, float 4 Lowest 2 bits are 0: 0b…00

long, double 8 Lowest 3 bits are 0: 0b…000

long double 16 Lowest 4 bits are 0: 0b…0000

33

Alignment in Structs

● Each field must be aligned to the size of its data type
○ Internal fragmentation: unused space between fields to that

each field is aligned

struct S1 {
char c;
int i[2];
double v;

}

How can we minimize internal fragmentation?

34

Alignment in Structs (pt 2)

● Internal fragmentation: unused space between fields to

that each field is aligned
○ Changing ordering of fields can reduce the amount of padding

needed

struct S1 {
double v;
int i[2];
char c;

}

35

Alignment in Structs (pt 3)

● Within struct: fields must be aligned to the size of their types

● Overall struct

○ Must be aligned to Kmax

■ Kmax = largest alignment requirement of any field

○ Add external fragmentation at the end of the struct to maintain alignment

struct S1 {
double v;
int i[2];
char c;

}

36

Why External Fragmentation?

● Arrays of structs

○ If overall structure is aligned to Kmax, each field will be aligned

for every element in the array

struct S1 {
double v;
int i[2];
char c;

}

37

Alignment of Structs (pt 4)

● Compiler will do the following:

○ Maintain the order of fields specified in the C code

○ Add internal fragmentation to preserve alignment of fields

○ Add external fragmentation to preserve alignment of the overall struct

38

Programming With Structs Tips

● Because of padding, size of a struct != the sum of the sizes of each field

○ Use sizeof() to get the true size

● To save space, declare larger fields first

struct s {
char c;
int i;
char d;

}

struct s {
int i;
char c;
char d;

}

39

Practice Question

struct old {
int i;
short s[3];
char* c;
float f;

};

struct new{
______ ______;
______ ______;
______ ______;
______ ______;

};

1. Minimize the size of the struct by re-ordering the fields.

1. sizeof(struct old) == 32 B. What sizeof(struct new)?

A) 22 bytes

B) 24 bytes

C) 28 bytes

D) 32 bytes

40

Summary: Arrays

● Contiguously allocated

● Array name evaluates to starting address

○ Not a variable! Becomes a label in assembly

● Multidimensional arrays stored in row-major order: T A[R][C]

○ A[i] = array of row i = A + i*C*sizeof(T)

○ A[i][j] = element j of row i = Mem[A + (i*C + j)*sizeof(T)]

● Multilevel arrays are arrays of pointers to other arrays: T* A[R] = {...}

○ A[i] = Mem[A + i*sizeof(pointer)]

○ A[i][j] = Mem[Mem[A+i*sizeof(pointer)] + j*sizeof(T)]

41

Summary: Structs

● User defined types containing fields

○ Fields allocated in order declared by programmer

● Accessing Fields

○ For an instance of the struct, use .

○ For a pointer, use ->

■ Equivalent to * (dereference) and then .

● Compiler adds padding to maintain alignment

○ Each field must be aligned to its size: add internal fragmentation

○ Struct must be aligned to Kmax: add external fragmentation

○ Minimize fragmentation by ordering fields from largest to smallest in C code

42

	Slide 1: Arrays, Structs & Alignment
	Slide 2: Administrivia
	Slide 3: Layers of Computing Revisited
	Slide 4: Review Questions
	Slide 5: Lecture Topics
	Slide 6: Recap: Arrays
	Slide 7: Recap: Array Accesses
	Slide 8: Arrays in Memory Example
	Slide 9: C Details: Arrays and Pointers
	Slide 10: C Details: Arrays and Functions
	Slide 11: Lecture Topics
	Slide 12: Nested Array Example
	Slide 13: Nested Array Example (pt 2)
	Slide 14: Multi-Dimensional (Nested) Arrays
	Slide 15: Nested Array Row Access
	Slide 16: Nested Array Element Access
	Slide 17: Lecture Topics
	Slide 18: Multilevel Array
	Slide 19: Multilevel Array Element Access
	Slide 20: TLDR: Array Element Accesses
	Slide 21: Lecture Topics
	Slide 22: Structs in C
	Slide 23: Struct Definition
	Slide 24: Typedef in C
	Slide 25: Scope of Struct Definition
	Slide 26: Accessing Struct Fields
	Slide 27: Aside: Java
	Slide 28: Lecture Topics
	Slide 29: Struct Representation
	Slide 30: Accessing Struct Fields (pt 2)
	Slide 31: Pointers to Struct Fields
	Slide 32: Recap: Alignment
	Slide 33: Alignments in x86-64
	Slide 34: Alignment in Structs
	Slide 35: Alignment in Structs (pt 2)
	Slide 36: Alignment in Structs (pt 3)
	Slide 37: Why External Fragmentation?
	Slide 38: Alignment of Structs (pt 4)
	Slide 39: Programming With Structs Tips
	Slide 40: Practice Question
	Slide 41: Summary: Arrays
	Slide 42: Summary: Structs

