
Procedures II & Executables
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1



Administrivia

● Today

○ HW9 due (11:59pm)

○ Quiz 1 due (11:59pm)!!!!!

● Monday, 7/15

○ RD12 due (1pm)

○ HW10 due (11:59pm)

○ Midterm Survey out on Canvas

● Wednesday, 7/17

○ RD13 due (1pm)

○ HW11 due (11:59pm)

○ Midterm Survey Due (11:59pm)

2



Aside: Lab2 Extra Credit

● All labs from now on will have some extra credit

● Separate Gradescope assignment

● Not worth a significant amount of credit!

○ I will maybe bump your grade up if you’re on the borderline

3



Lecture Topics

● Stack structure

● Calling conventions

○ Passing control

○ Passing data

○ Managing local data

● Stack frames

○ Saved registers

○ Stack layout

○ Register saving convention

● Illustration of Recursion

4

● Executables

○ CALL

○ Object Files



Review Questions

Answer the following questions about when main() is run (assume x and y are stored on the 
stack):

int main() {
int i, x = 0;
for(i=0; i<3; i++)

x = randSum(x);
printf("x = %d\n",x);
return 0;

}

int randSum(int n) {
int y = rand()%20;
return n+y;

}

1. How many total stack frames are created?

A) 3 B) 5        C) 7        D) 8

2. What is the maximum depth (# of frames) 

of the Stack?

A) 1        B) 2        C) 3        D) 4

3. (Not on Ed) Which has a higher address 

address: x or y?

5



Review Questions

6



Recap: x86-64/Linux Stack Frame

● Caller’s stack frame

○ Extra arguments (if > 6 args) for this call

● Current stack frame

○ Return address (pushed by call)

○ Old frame pointer (optional)

○ Saved register content

○ Local variables (that can’t be saved in 

registers)

○ Argument build - if the current function needs 

to call another, extra arguments for that call go 

here

7



Procedure Call Example: increment

long increment(long* p, long val) {
long x = *p;
long y = x + val;
*p = y;
return x;

}

increment:
movq (%rdi), %rax
addq %rax, %rsi
movq %rsi, (%rdi)
ret

%rdi p (arg1)

%rsi val (arg2), y

%rax x (return)

8



Example: initial state

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

● When main calls call_incr, push the return 

address onto the stack

○ Marks the beginning of call_incr’s stack frame

9



Example: step 1

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

● Stack grows down, so subq adds 16B of free 

space to the stack

● movq

○ $ means 351 is an immediate

○ Destination is memory address %rsp+8

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

10



Example: step 2

● Set up arguments for increment

%rdi %rsp+8

%rsi 100

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

11



Example: step 3

● call pushes return address (to the addq

instruction after the call) onto the stack

○ Sets %rip to point to the beginning of increment

%rdi

%rsi 100

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

return

12



Example: step 4

increment:
movq (%rdi), %rax
addq %rax, %rsi
movq %rsi, (%rdi)
ret

● Store return value into %rax

%rdi (p)

%rsi 100 (val)

%rax 351 (old *p)

long increment(long* p, long val) {
long x = *p;
long y = x + val;
*p = y;
return x;

}

13



Example: step 5

● Add %rax (x) to %rsi (val)

● Write result to the location location %rdi (p) 

points to

increment:
movq (%rdi), %rax
addq %rax, %rsi
movq %rsi, (%rdi)
ret

%rdi (p)

%rsi 451 (x+val)

%rax 351 (old *p)

long increment(long* p, long val) {
long x = *p;
long y = x + val;
*p = y;
return x;

}

14



Example: step 6

● Remove return address from the stack

○ Set %rip to removed value 
increment:

movq (%rdi), %rax
addq %rax, %rsi
movq %rsi, (%rdi)
ret

%rdi (p)

%rsi 451 (x+val)

%rax 351 (old *p)

long increment(long* p, long val) {
long x = *p;
long y = x + val;
*p = y;
return x;

}

15



Example: step 6.5

● Resume instruction at the location %rip is set to (the 

addq instruction)

● %rax stores the value that was returned from 

increment

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

%rdi

%rsi 451

%rax 351 (v2)

16



Example: step 7

● Update %rax to contain v1+v2

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

%rdi

%rsi 451

%rax 802 (ret)

17



Example: step 8

● Clean up the stack

● Return back to main (not shown)

call_incr:
subq $16, %rsp
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq 8(%rsp), %rax
addq $16, %rsp
ret

long call_incr() {
long v1 = 351;
long v2 = increment(&v1, 100);
return v1 + v2;

}

%rdi

%rsi 451

%rax 802 (ret)

18



Lecture Topics

● Stack structure

● Calling conventions

○ Passing control

○ Passing data

○ Managing local data

● Stack frames

○ Saved registers

○ Stack layout

○ Register saving convention

● Illustration of Recursion

19

● Executables

○ CALL

○ Object Files



Recap: Caller and Callee

20

● Both use the same registers for their arguments and local variables, so 

how do we prevent them from overwriting each other’s data?

1. Before writing to a register, push the old value onto the stack

2. Pop old value back into the register before returning



Register Saving Conventions

● Caller-saved registers

○ It is the caller’s responsibility to save these registers’ values before calling another 

procedure

○ Callee is free to change these registers

○ Caller restores registers after callee returns

● Callee-saved registers

○ Callee guarantees that registers not be modified by this function

○ Caller doesn’t need to save before calling

○ If the callee wants to use these, it must save their old data first, and restore before 

it returns

21



Silly Register Convention Analogy
Parents = caller, child = callee

1. Parents are gone for the weekend and give their child the keys to the house
○ Being suspicious, they hid the valuables from the first floor (caller-saved) before 

leaving

○ They warn the child to leave the second floor untouched: “These rooms better look 

the same when we return!”

2. Child decides to throw a wild party (computation), spanning the entire house
○ To avoid getting in trouble, child moves all of the stuff from the second floor to the 

backyard shed (callee-saved) before the guests trash the house

○ Child cleans up house after the party and moves stuff back to second floor

3. Parents return home
○ Move valuables back into first floor and continue with their lives

22



x86-64 Linux Registers: Caller-Saved

● %rax

○ Return value from callee

● %rdi...%r9

○ Arguments for callee

○ Caller saves before putting args 

there

● %r10, %r11

○ General-purpose registers

23



x86-64 Linux Registers: Callee-Saved

● %rbx, %r12 - %r15

○ General-purpose registers

● %rbp

○ Base pointer, or general-purpose

■ Can mix and match

● %rsp

○ Special case

■ Does not explicitly push value

■ Stack should be in the same 

state on return as it was at 

the beginning of the call

24



Why have both Caller- and Callee-Saved?

● We need one convention for all functions

● Neither is “best” in all cases

○ If caller isn’t using a register, caller-saved is better

○ If callee doesn’t need a register, callee-saved is better

○ If “do need to save”, callee-saved generally makes faster programs

■ Callee can be called from multiple places

● So… we went with “some of each”

○ Compiler tries to pick registers to minimize saving

25



Register Saving Conventions Summary

● Caller-saved: register values need to be pushed onto the stack before

making a procedure call only if the caller needs that value later

○ Callee may change those register values

○ Popped after call returns

● Callee-saved: register values need to be pushed onto the stack only if the 

callee intends to use those registers

○ Caller expects unchanged values in those registers upon return

○ Popped before callee returns

● Don’t forget to restore/pop the values later!

26



Lecture Topics

● Stack structure

● Calling conventions

○ Passing control

○ Passing data

○ Managing local data

● Stack frames

○ Saved registers

○ Stack layout

○ Register saving convention

● Illustration of Recursion

27

● Executables

○ CALL

○ Object Files



Recursive Function

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

● Counts the number of 1’s in the binary 

representation of x
● Compiler Explorer: 

https://godbolt.org/z/E943Gz3M5
○ Compiled with -O1 instead of -Og for more 

natural instruction ordering

28

https://godbolt.org/z/E943Gz3M5


Recursive Function: Base Case

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

29



Recursive Function: Saved Registers

● %rdi is a caller-saved register, needs to be saved 

before recursive call

○ Rather than saving %rdi the stack, compiler put it 

in %rbx, which is callee-saved

■ Has to save old %rbx value on the stack first

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

30



Recursive Function: Saved Registers (pt 2)

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

%rdi x

%rbx x

31



Recursive Function: Call Setup

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

● Shift %rdi by 2 to set up argument for next call

%rdi x >> 1

%rbx x

32



Recursive Function: Call

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

%rdi x >> 1

%rbx x

%rax pcount_r(x>>1)

33



Recursive Function: Result

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

%rdi x >> 1

%rbx x & 1

%rax return value

34



Recursive Function: Completion

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;

else
return (x & 1) + pcount_r(x >> 1);

}

pcount_r:
movl $0, %eax
testq %rdi, %rdi
jne .L8
ret

.L8:
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx
ret

%rdi x >> 1

%rbx old %rbx

%rax return value

35



Observations About Recursion

● Works without any special considerations

○ Each call gets its own stack frame for local variables + return address

○ Register saving prevents one function call from corrupting another’s data

○ Stack discipline follows call/return pattern

■ Last-in, first-out (like a stack!)

● The principals work for all functions, not just recursion

36



Lecture Topics

● Stack structure

● Calling conventions

○ Passing control

○ Passing data

○ Managing local data

● Stack frames

○ Saved registers

○ Stack layout

○ Register saving convention

● Illustration of Recursion

37

● Executables

○ CALL

○ Object Files



CALL: Building an Executable with C

● Code in files p1.c p2.c

○ Compile with gcc -Og p1.c p2.c -o p

○ Run with ./p

38



CALL: Compiler

● Input: Higher-level language code (e.g., C, Java)

○ Ex: foo.c

● Output: Assembly language code (e.g. x86, ARM)

○ Ex: foo.s

● For C, starts with preprocessor to process #directives before compilation

○ Macro substitution, etc.

○ If you’re curious: http://tigcc.ticalc.org/doc/cpp.html

● Performs optimizations

○ For gcc, specified by -O flag (e.g. -Og, -O3)

○ List of options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

● Super complex, there’s a whole course dedicated to these (CSE 401)!

39

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Compiling (into Assembly) Example

void sumstore(long x, long y, long *dest) {
long t = x + y;
*dest = t;

}

Example: C code (sum.c)

sumstore:
addq %rdi, %rsi
movq %rsi, (%rdx)
ret

x86-64 assembly (gcc –Og –S sum.c  ->  sum.s)

Warning: You may get different 

results with other versions of

gcc and different compiler settings

Note: this is still “source code” 

in a sense – human-readable

instructions, written out as 

text.

40



CALL: Assembler

● Input: Assembly language code (e.g., x86, ARM)

○ Ex: foo.s

● Output: Object files (e.g., ELF, COFF)

○ Ex: foo.o

● Very similar to assembly but a little different; Contains object code and 

information tables

● Reads and uses assembly directives from source files

○ e.g., .text, .data, .quad

○ x86 directives: https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

● Produces “machine language” (binary instructions)

○ Does it’s best, but object file is NOT a complete binary

41

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html


Producing Machine Language

● Simple cases: arithmetic and logical operations, shifts, etc.

○ i.e. Instructions that don’t reference addresses

○ Assembler can do this

■ All necessary information is contained in the instruction itself!

● Complex cases: jumps, accessing static data (e.g., global variable or jump 

table), procedure calls

○ Addresses and labels are not generated in the assembly stage

■ May need addresses to things from other files

● So what do we do in the meantime?

42



Object File Information Tables

Each object file has a symbol table and relocation table

● Symbol Table holds list of “items” that may be used by other files

○ i.e. “this is what I have and know about”

○ Non-local Labels – function names usable for call

○ Static Data – variables & literals that might be accessed across files

● Relocation Table holds list of “items” that this file needs the address of later 

(currently undetermined)

○ i.e. “these are the things I need”

○ Any label or piece of static data referenced in an instruction in this file

■ Both internal and external

43



CALL: Linker

● Input: Object files (e.g., ELF, COFF)

○ Ex: foo.o

● Output: Executable binary program

○ Ex: foo (default is a.out)

● Combines (links) several object files

● Enables separate compilation/assembling of files

○ Changes to one file don’t require recompiling the others

44



Linking Example

1. Concatenate text and data segments from each .o file

2. Go through each entry in relocation tables
a. Find address based on its location in the text and data segments

b. Replace label in the code with that address

What if we can’t resolve all the references?

45



Linking Example (pt 2)

1. Concatenate text and data segments from each .o file

2. Go through each entry in relocation table
a. Find address based on its location in the text and data segments

b. Replace label in the code with that address

// tell the compiler that findme 
// is in a different file
extern void findme();

int main() {
findme();
return 0;

}

$ gcc findme.c
/usr/bin/ld: /tmp/ccAQ36Zy.o: in function ‘main’:
findme.c:(.text+0xa): undefined reference to 
‘findme’
collect2: error: ld returned 1 exit status

46



CALL: Loader

● Input: executable binary program, command-line arguments

○ Ex: ./foo arg1 arg2

● Output: <program is run>

● Memory sections (Instructions, Static Data, Stack) are set up

● Registers are initialized

● Handled by operating system

○ Want to implement this yourself? Take OS (CSE 451)!

47



Disassembling

● Approximates of assembly from machine code (object file or executable)
○ Ex: objdump -d foo

● Looks similar to assembly file, but we actually have more info!
○ Addresses, all symbols, etc.

void sumstore(long x, long y, long *dest) {
long t = x + y;
*dest = t;

}

0000000000400536 <sumstore>:
400536: 48 01 fe   add %rdi,%rsi
400539: 48 89 32   mov %rsi,(%rdx)
40053c: c3         retq

48



What Can be Disassembled?

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 
30001001: 
30001003: 
30001005:
3000100a:

● Anything that can be interpreted as executable code! However…

○ Not always accurate

○ Often illegal (for 

commercial software)

○ Falls under academic 

misconduct for school 

assignments (unless 

we tell you to)

49



Discussion

Discuss in groups of 2-4, and then we’ll talk as a class:

● We’ve seen a few examples of names that are derived from history

○ Ex: a “word” being 2 byte in x86

● Naming/etymology plays a big role in learning

○ Which new terms from CSE 351 been the most intuitive for you to learn vs. the 

most difficult?

○ What do you think goes into a good vs. bad name (more generally in computer 

science)?

50



Summary

● Stack is organized into frames, one for each call

○ Store all the data for that function, return address, and saved registers

● Register saving convention prevents data from being lost between calls

○ Caller-saved: saved before a function is called, popped after

○ Callee-saved: saved before being used, popped before returning

● 4 steps to generate and run a program:

○ Compile: generate assembly for each source file

○ Assemble: generate object file for each source file

■ Includes symbol table and relocation table

○ Link: combine object files into one executable

○ Load: OS sets up memory and registers before running

51


	Slide 1: Procedures II & Executables
	Slide 2: Administrivia
	Slide 3: Aside: Lab2 Extra Credit
	Slide 4: Lecture Topics
	Slide 5: Review Questions
	Slide 6: Review Questions
	Slide 7: Recap: x86-64/Linux Stack Frame
	Slide 8: Procedure Call Example: increment
	Slide 9: Example: initial state
	Slide 10: Example: step 1
	Slide 11: Example: step 2
	Slide 12: Example: step 3
	Slide 13: Example: step 4
	Slide 14: Example: step 5
	Slide 15: Example: step 6
	Slide 16: Example: step 6.5
	Slide 17: Example: step 7
	Slide 18: Example: step 8
	Slide 19: Lecture Topics
	Slide 20: Recap: Caller and Callee
	Slide 21: Register Saving Conventions
	Slide 22: Silly Register Convention Analogy
	Slide 23: x86-64 Linux Registers: Caller-Saved
	Slide 24: x86-64 Linux Registers: Callee-Saved
	Slide 25: Why have both Caller- and Callee-Saved?
	Slide 26: Register Saving Conventions Summary
	Slide 27: Lecture Topics
	Slide 28: Recursive Function
	Slide 29: Recursive Function: Base Case
	Slide 30: Recursive Function: Saved Registers
	Slide 31: Recursive Function: Saved Registers (pt 2)
	Slide 32: Recursive Function: Call Setup
	Slide 33: Recursive Function: Call
	Slide 34: Recursive Function: Result
	Slide 35: Recursive Function: Completion
	Slide 36: Observations About Recursion
	Slide 37: Lecture Topics
	Slide 38: CALL: Building an Executable with C
	Slide 39: CALL: Compiler
	Slide 40: Compiling (into Assembly) Example
	Slide 41: CALL: Assembler
	Slide 42: Producing Machine Language
	Slide 43: Object File Information Tables
	Slide 44: CALL: Linker
	Slide 45: Linking Example
	Slide 46: Linking Example (pt 2)
	Slide 47: CALL: Loader
	Slide 48: Disassembling
	Slide 49: What Can be Disassembled?
	Slide 50: Discussion
	Slide 51: Summary

