X86-64 Programming |
CSE 351 Summer 2024

Instructor:
Ellis Haker

Teaching Assistants:
Naama Amiel

Micah Chang
Shananda Dokka
Nikolas McNamee
Jiawei Huang

HTML/CSS

Xx86 A
Assembly |

Binary

Tapping a

Charged Wire on P
the Motherboard g §

Administrivia

e Due today
o HWS5 (11:59pm)
o Lab la (11:59pm)
e Due Friday, 7/5
o RD8 (1pm)
o HWS6 (11:59pm)
e Quiz 1 released Friday at 11:59pm
e Optional reading posted on Ed
o Recent article about designing assembly language design
o Beyond the scope of this course, but very cool!

Review Questions

Assume that the register %rdx holds the value @x 01 02 603 04 05 06 07 08

Answer the following questions about the instruction subq $1, %rdx

Operation type: s e el i Mecmvse. st iown
Operand types: imueiiode () vensber (20
Operating width: % becensme of *0"
(extra) Result stored in %rdx:
)b~z "/ clrn—\ = ox 0L 6203 ot 0% 06 0F OF

S

Layers of Computing Revisited

e So far, we've focused on hardware
o How does the CPU store and read data
from memory?

e Shifting focus to languages & libraries
o How are programs created and executed
on the CPU?
o Take CSE 401 to learn more
e Still needs hardware support!
o Take CSE 469 to learn more

Software Applications
(written in Java, Python, C, etc.)

Programming Languages & Libraries
(e.g. Java Runtime Env, C Standard Lib)

Operating System
(e.g. MacOS, Windows, Linux)

Hardware
(e.g. CPU, memory, disk, network, peripherals)

Programming Languages & Libraries: 351 View

e Topics:
ftw licati
O X86‘64 aSSGmb|y g' I X\AL (writ?e?'l inggiﬁ;&ﬁﬁrgsetc.)
o Procedures fc"":" 4 RS
o Stacks et

o Executables
e How does your source code become
something that your computer understands?
e How does the CPU organize and manipulate
local data?

Programming Languages & Libraries
(e.g. Java Runtime Env, C Standard Lib)

Operating System
(e.g. MacOS, Windows, Linux)

Hardware
(e.g. CPU, memary, disk, network, peripherals)

Lecture Topics

e Assembly intro

Instruction set philosophies
e X86-64 programming

Data types

Instructions

Registers

Memory addressing

(@)

(@)

@)
@)
@)

Definitions

e Instruction Set Architecture (ISA): the parts of a processor design that one
needs to understand to write assembly code
o Whatis directly visible to software
o The “contract” between hardware and software
o 351 focus

e Microarchitecture: hardware implementation of the ISA
o CSE/EE 469

Instruction Set Architectures (Review)

ISA defines:

(@)

The system’s state (e.q.,
registers, memory, program
counter)

The instructions the CPU can
execute

The effect that each of these
instructions will have on the
system state

(

CPU /
PC /{ \
Registers

What is a Register? (Review)

e Special locations on the CPU that store a small amount of data
o Accessed very quickly (once per clock cycle)

e Have names, not addresses
o In x86, start with % (e.g., %rsi)

e Registers are at the heart of assembly programming
o Very useful, but scarce, especially in x86

Memory vs. Registers (Review)

< ‘i -

Memory el Registers
e Addresses | S e Names
o Ex: OXx7TFFFD024C3DC o Ex: %rdi
e Big e Small
o ~16GB o 16 8-byte registers = 128B
e Slow e [ast
o ~50-100ns o <1ns
e Dynamic e Static

o Can expand as needed o Fixed number in hardware

General ISA Design Decisions

e Instructions
o What instructions are available? What do they do?
o How are they encoded?
e Registers
o How many are there?
o How wide are they?
e Memory
o How do you specify a memory location?

Instruction Set Philosophies (Review)

e Complex Instruction Set Computing (CISC): lots of elaborate instructions
o Lots of tools for programmers to use, but hardware must be able to handle all
instructions
o x86-64 is CISC, but only a small subset of instructions encountered with Linux
programs
e Reduced Instruction Set Computing (RISC): keep instruction set small and

regular
o Easier to build fast, less power-hungry hardware
o Let software do the complicated operations by composing simpler ones
o ARM, RISC-V

Instruction Set Philosophies (Review) (pt 2)

e Complex Instruction Set Computing (CISC): lots of elaborate instructions

o Lots of tools for programmers to use, but hardware must be able to handle all
instructions

o x86-64 is CISC, but only a small subset of instructions encountered with Linux
programs

Example: ADDSUBPS

“Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the
corresponding single-precision floating-point values from the second source operand (third operand); stores the
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single-
precision floating-point values from the second source operand from the corresponding single-precision floating
values in the first source operand; stores the result into the even-numbered values of the destination operand.”

Mainstream ISAS

intel. arm RISC
ARM RISC-V
x86 Designer Arm Holdings
Bits 32-bit, 64-bit Designer University of California,
Designer Intel, AMD trodiicad. “1085 Berkeley
Bits 16-bit, 32-bit and 64-bit Design RISC Bits 32-64-128
Introduced 1978 (16-bit), 1985 (32-bit), 2003 Type Register-Register Introduced 2010
(64-bit) Encoding AArch64/A64 and AArch32/A32 Design RISC
Design CISC use 32-bit instructions, T32
- Reqist (Thumb-2) uses mixed 16- and Type Load-store
ype S SEEIENL 32-bit instructions; ARMv7 user- Encoding Variable
Encoding Variable (1 to 15 bytes) space compatibility.[']
) . . i Endianness Littlel!1%]
Branching Condition code Branching Condition code, compare and
Endianness Little arEnch
| Endianness Bi (little as default)

PCs, older Macs Mobile devices, M1/M2 Mostly research
Xx86-64 instruction set Macs RISC-V instruction set

Current Industry Trends - A RISC-y Shift i

[

e Historically, there was a lot of debate about RISC vs CISC '
o Intel went the CISC route in the 1980s

m Would make programming in assembly easier Wi

m Implementing more things in hardware

e Traditional wisdom says the RISC is better for simple systems, not PCs

e But things are shifting!
o Apple switched to ARM in 2020
e Why?
o Efficiency: RISC uses less power
o Performance: each instruction is faster, easier to parallelize
o Scalability: suitable for devices of all sizes (desktops, laptops, and phones)

Architecture Sits at the Hardware Interface

___________ v Apple M1

Source code Compiler Architecture Hardware extcom -,&.q .
Different applications Perform optimizations, Instruction set Different comveqdy
or algorithms generate instructions implementations \°
o 6,e ato))
fom TS oSS m—m—-—----- Intel Pentium 4 ko U
, C Language 'U‘f»-(i
I
: Intel Xeon
| | Program R
. A ! I
: > x86-64 | Intel Core i7
i . *
1
\ | Program 1 AMD Ryzen
I I
1 B 1
: ' AMD Epyc
| : R ,
I 1 i 1
| I |) bl ARM Cortex-A53
'| program ! ! (AArch64/A64)!
I]
I]

Writing Assembly Code? In SCURRENT_YEAR???

e Chances are, you'll never write a program in assembly, but understanding it is
the key to the machine-level execution model WHAT YEAR
™ 5

hy

o Behavior of programs in the presence of bugs

m When high-level language model breaks down
o Tuning program performance

m Understand optimizations done/not done by the compiler ISIT2!
o Implementing systems software

m What are the “states” of processes that the OS must manage

m Using special units (timers, I/0O co-processors, etc.) inside processor!
o Fighting malicious software

m Distributed software is in binary form

Lecture Topics

e Assembly intro

Instruction set philosophies
e X86-64 programming

Data types

Instructions

Registers

Memory addressing

(@)

(@)

@)
@)
@)

“E‘f’hs

x86-64 Integer Registers — 64 blts wide

sf“l'e-\
s "1"*’,
well i
Y N
okef !

$rax %eax $r8 $r8d

srbx $ebx %r9 $r9d

srcx $ecx $rl0 $rl0d
srdx $edx rll $rlld
srsi %esi srl2 $rl2d
srdi %edi rl3 $rl3d
IrsSp %esp %rld $rldd
srbp sebp %rl5 $rl5d

L Tm—

Some His'g_ory: IA32 Registers — 32 bits wide

we 5‘-;“ L\o-rL Seax %ax %ah %al accumulate A—{\ A Heoce -
ctsne to *|'|;-l—':-L o %ecx %cx %ch $cl counter ot~ “r'— “‘u'!—ﬂM
ol i 8
%?\1‘ £ | |%edx $dx $dh $d1 data Celefene Qut
Mo-wtA, ! 2 -
e W fGQJ I—. E %ebx $bx %bh $bl base
c
@
‘Hk \"'N "b“ﬁ % $esi %si source index
? ?E "‘5"’1"($edi %di destination index
sesp %sp stack pointer
%Ebp %bp base pointer
\ J
\
16-bit virtual registers Name Origin

(backwards compatibility) (mostly obsolete)

x86-64 Assembly “Data Types”

Integral data of 1, 2, 4, or 8 bytes (b, w, 1, q)-a,:.S.J— ol onsiepad. B Jaesn'h
Floating point data, not covered in 351 *"”“"3""’* J

o Different registers for those (e.g., %xmm1, %ymm2)
o Come from extensions to x86 (SSE, AVX, ...)

e No aggregate types such as arrays or structs
o Just contiguously allocate bytes in memory— ov»\D 34* o "‘.5\’“ denants ot e

e Two common syntaxes—Must know which you're reading!
o AT&T: used in our course, gnu tools (including gcce), ...

o Intel: used in Intel documentation, Intel tools, ...

c.;lm) ATAT? TF wanl bo Lo Rel LA‘.,\

Instruction Sizes and Operands (Review)

e Size specifiers
b Iz 1-bvte (“bvte” Why is “word” 2 bytes? Because that was
° = 1-byte (‘byte’) the word size when x86 was new, and it has

o w = 2-byte (“word”) to be maintained for backwards

o 1 =4-byte (“long word”)\‘ compatibility.

o ¢q = 8-byte (“quad word”) .

. { 2@ AL + '
o If using registers, much match width e =l 2= h wtd u&(fﬂ_ v
X 1{ w-,.ub q, wir 81D rr.are X'
e Operand types
o Immediate: constant value ($)

o Register: 1 of 16 general-purpose registers (%
o Memory: consecutive bytes of memory at a computed address (())

OLoraing 1, vie 45

1 s

Instruction Types (Review)

Remember: Memory
1. Transfer data between memory and a register is indexed just like an
o Load from memory -> register array of bytes!
m %reg = Memory[address]
o Store from register -> memory
m Memory[address] = %reg

o Note: cannot transfer between two memory locations in one instruction!
2. Perform arithmetic operation on register or memory data

o Ex:c=a+b; Z=X<<Yy; I=h&gq;
3. Control flow: what instruction to execute next

o Unconditional jumps to/from procedures l'wf"“- lac hure
o Conditional branches

Moving Data 5 iww es e ¥ \ove can iendioke
m wenwn e He dobiehow

\ . :
e General form: movq <source>, <destination>
o More of a “copy” than a “move”
o Missing letter (_) is for the width specifier

EXx: movqg %rax, %rbx

o Copies the 8-byte value from register %rax into register %rbx

e Operand Combinations:
o Immediate -> Register or Memory (copies Immediate value to location)
O Register -> Register or Memory (copies data in register to location)

o Memory -> Register (copies data in memory to register) requns L ipshaetius

m Can’'t go from memory -> memory in a single instruction! memMm = 4
g rt.>—’wvtvlul

Some Arithmetic Operations GG Notes
addq src, dst dst = dst + src

e Binary (two-argument) operations
o Beware argument order!
m src can be immediate, imulq src, dst | dst = dst * src
register, or memory
m dst only register or memory
m Results always stored in dst shrq src, dst | dst =dst >> src Logical
o Maximum of one memory
operand! Seswmec_ o WV
o No distinction between signed and xorqsrc, dst | dst=dst” src

subq src, dst dst = dst - src

sarg src, dst | dst=dst >>src Arithmetic

shlqg src, dst | dst=dst <<src | Same as shlq

unsigned andq src, dst | dst=dst & src
m Only arithmetic vs logical

shifts

org src, dst dst =dst | src

Practice Question

Which of the following are valid implementations of rcx = rax + rbx?

® addqg %rax, %rcx rexs cef s @X @ovq %rax, 9%rcx rers fer

addqg %rbx, %rcx vex=viss cofr iy addq %rbx, %rcx cogz cexsisr
M‘S‘"MMD Nolt— H“"—LQ 7—0‘.
(® Zovq $O, %rcx rex=e ® Xxorq %rax, %raxe*=°
ddqg %rbx, %rcx rexz 0+ K =vlyx addq %rax, %rcx cazver +#0= X

addq %rax, %rcx ez rexs iz addq %rbx, %rcx ez e vk

Arithmetic Example

long simple_arith(long x, long y) %rdi 1st arg (x)
{ srsi
% 2nd ar
long t1 = x + y; g ()
long t2 = t1 * 3; %rax return value
return t2;
ks
simple_arith:
y += X; addq %rdi, %rsi
y *= 33 ____—> imulq $3, %rsi
long r = y; mov(q %rsi, %rax

return r; ret

Example of Basic Addressing Modes

long add_ptr(long*x xp, long* yp) e Parentheses = memory addressing
{ o t6 o Treat the value in the register
ong = *xXp;
lons &l = st as an address
return t0 + t1;
}
add_ptr: Compiler Explorer:

movq (%rdi), %rdx https://godbolt.org/z/zc4Pcq
movq (%rsi), %rax

addq %rdx, %rax
ret

https://godbolt.org/z/zc4Pcq

Understanding add_ptr ()

%rdi Xp
long add_ptr(long* xp, longx yp) %rsi yp
{ /
Lo 0 = A %rdx t0
long t1 = *yp; %rax return
return t0 + t1;
} Registers Memory
srdi| g @ > * K¢
add_ptr: %rsi
movq (%rdi), %rdx Al .\\
movq (%rsi), %rax Srax %ot ¥
addq %rdx, %rax
ret Srdx| % *x¢

Memory Addressing Modes

e General format: D(Rb,R1,S) = Mem[Reg(Rb) + Reg(R1)*S + D]
O Rb = base register (any register)
O Ri = index register (any register except %rsp)
o S =scale factor (1, 2, 4, 8) - Why these numbers? s=& o Sebe wilils
o . . U\Sus— G wnde o—:f‘\‘Lul—-c /
o D = displacement value (immediate) ¢)
o . 7\' .
e Can leave any of these out: & Lelev\be, Lo\, ol\ slheey e >
D(Rb,R1) = el rei «D =1 “euti ko

(@)

o (Rb,R1,S) =gl r@ixs . D=0

o (Rb,Ri) =gL+@y - D=0, S=1
o (pR1,S)= kx5 - D=0, Rb=0
o efc...

;h Ko a.\(a-W(l-& (/f&\ o Qﬂ'V\‘omS ‘a_(&,«./ / l)/t ooy ‘A:

Address Computation Examples

%rdx

OXFOOO

éﬂtaﬂfX/ Lquq VJJ[\ cnvl:hw_/
e 8-bit addresses O Berbey O %rcx

Ox0100

e Reminder: D(Rb,R1,S) —»Mem[Reg[Rb]+Reg[R1]*S+D]
o (ignoring memory addressing portion for this exercise)

Expression Address Computation Address

Ox8 (%rdx)

(%rdx, %rcx)

(%rdx, %rcx, 4)

Ox80(, %rcx, 2)

Summary

e x86-64is a complex (CISC) architecture
o There are 3 types instructions
m Data transfer
m Arithmetic
m Control flow
o There are 3 types of operands
m Registers (%)
m Immediates ($)
m Memory (())

e Registers are small, fast places to store memory
o Limited number, each with their own name

	Slide 1: x86-64 Programming I
	Slide 2: Administrivia
	Slide 3: Review Questions
	Slide 4: Layers of Computing Revisited
	Slide 5: Programming Languages & Libraries: 351 View
	Slide 6: Lecture Topics
	Slide 7: Definitions
	Slide 8: Instruction Set Architectures (Review)
	Slide 9: What is a Register? (Review)
	Slide 10: Memory vs. Registers (Review)
	Slide 11: General ISA Design Decisions
	Slide 12: Instruction Set Philosophies (Review)
	Slide 13: Instruction Set Philosophies (Review) (pt 2)
	Slide 14: Mainstream ISAs
	Slide 15: Current Industry Trends - A RISC-y Shift
	Slide 16: Architecture Sits at the Hardware Interface
	Slide 17: Writing Assembly Code? In $CURRENT_YEAR???
	Slide 18: Lecture Topics
	Slide 19: x86-64 Integer Registers – 64 bits wide
	Slide 20: Some History: IA32 Registers – 32 bits wide
	Slide 21: x86-64 Assembly “Data Types”
	Slide 22: Instruction Sizes and Operands (Review)
	Slide 23: Instruction Types (Review)
	Slide 24: Moving Data
	Slide 25: Some Arithmetic Operations
	Slide 26: Practice Question
	Slide 27: Arithmetic Example
	Slide 28: Example of Basic Addressing Modes
	Slide 29: Understanding add_ptr()
	Slide 30: Memory Addressing Modes
	Slide 31: Address Computation Examples
	Slide 32: Summary

