
x86-64 Programming I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● Due today

○ HW5 (11:59pm)

○ Lab 1a (11:59pm)

● Due Friday, 7/5

○ RD8 (1pm)

○ HW6 (11:59pm)

● Quiz 1 released Friday at 11:59pm

● Optional reading posted on Ed

○ Recent article about designing assembly language design

○ Beyond the scope of this course, but very cool!

2

Review Questions

Assume that the register %rdx holds the value 0x 01 02 03 04 05 06 07 08

Answer the following questions about the instruction subq $1, %rdx

1. Operation type:

2. Operand types:

3. Operating width:

4. (extra) Result stored in %rdx:

3

Layers of Computing Revisited

● So far, we’ve focused on hardware

○ How does the CPU store and read data

from memory?

● Shifting focus to languages & libraries

○ How are programs created and executed

on the CPU?

○ Take CSE 401 to learn more

● Still needs hardware support!

○ Take CSE 469 to learn more

4

Programming Languages & Libraries: 351 View

● Topics:

○ x86-64 assembly

○ Procedures

○ Stacks

○ Executables

● How does your source code become

something that your computer understands?

● How does the CPU organize and manipulate

local data?

5

Lecture Topics

● Assembly intro

○ Instruction set philosophies

● X86-64 programming

○ Data types

○ Instructions

○ Registers

○ Memory addressing

6

Definitions

● Instruction Set Architecture (ISA): the parts of a processor design that one

needs to understand to write assembly code

○ What is directly visible to software

○ The “contract” between hardware and software

○ 351 focus

● Microarchitecture: hardware implementation of the ISA

○ CSE/EE 469

7

Instruction Set Architectures (Review)

● ISA defines:

○ The system’s state (e.g.,

registers, memory, program

counter)

○ The instructions the CPU can

execute

○ The effect that each of these

instructions will have on the

system state

8

What is a Register? (Review)

● Special locations on the CPU that store a small amount of data

○ Accessed very quickly (once per clock cycle)

● Have names, not addresses

○ In x86, start with % (e.g., %rsi)

● Registers are at the heart of assembly programming

○ Very useful, but scarce, especially in x86

9

Memory vs. Registers (Review)

Memory

● Addresses

○ Ex: 0x7FFFD024C3DC

● Big

○ ~16GB

● Slow

○ ~50-100ns

● Dynamic

○ Can expand as needed

Registers

● Names

○ Ex: %rdi

● Small

○ 16 8-byte registers = 128B

● Fast

○ <1ns

● Static

○ Fixed number in hardware

10

General ISA Design Decisions

● Instructions

○ What instructions are available? What do they do?

○ How are they encoded?

● Registers

○ How many are there?

○ How wide are they?

● Memory

○ How do you specify a memory location?

11

Instruction Set Philosophies (Review)

● Complex Instruction Set Computing (CISC): lots of elaborate instructions

○ Lots of tools for programmers to use, but hardware must be able to handle all

instructions

○ x86-64 is CISC, but only a small subset of instructions encountered with Linux

programs

● Reduced Instruction Set Computing (RISC): keep instruction set small and

regular

○ Easier to build fast, less power-hungry hardware

○ Let software do the complicated operations by composing simpler ones

○ ARM, RISC-V

12

Instruction Set Philosophies (Review) (pt 2)

● Complex Instruction Set Computing (CISC): lots of elaborate instructions

○ Lots of tools for programmers to use, but hardware must be able to handle all

instructions

○ x86-64 is CISC, but only a small subset of instructions encountered with Linux

programs

Example: ADDSUBPS

● “Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the

corresponding single-precision floating-point values from the second source operand (third operand); stores the

result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single-

precision floating-point values from the second source operand from the corresponding single-precision floating

values in the first source operand; stores the result into the even-numbered values of the destination operand.”

13

Mainstream ISAs

PCs, older Macs

x86-64 instruction set

Mobile devices, M1/M2

Macs

ARM instruction set

Mostly research

RISC-V instruction set

14

Current Industry Trends - A RISC-y Shift

● Historically, there was a lot of debate about RISC vs CISC

○ Intel went the CISC route in the 1980s

■ Would make programming in assembly easier

■ Implementing more things in hardware

● Traditional wisdom says the RISC is better for simple systems, not PCs

● But things are shifting!

○ Apple switched to ARM in 2020

● Why?

○ Efficiency: RISC uses less power

○ Performance: each instruction is faster, easier to parallelize

○ Scalability: suitable for devices of all sizes (desktops, laptops, and phones)

15

Architecture Sits at the Hardware Interface

16

Writing Assembly Code? In $CURRENT_YEAR???

● Chances are, you’ll never write a program in assembly, but understanding it is

the key to the machine-level execution model

○ Behavior of programs in the presence of bugs

■ When high-level language model breaks down

○ Tuning program performance

■ Understand optimizations done/not done by the compiler

○ Implementing systems software

■ What are the “states” of processes that the OS must manage

■ Using special units (timers, I/O co-processors, etc.) inside processor!

○ Fighting malicious software

■ Distributed software is in binary form

17

Lecture Topics

● Assembly intro

○ Instruction set philosophies

● X86-64 programming

○ Data types

○ Instructions

○ Registers

○ Memory addressing

18

x86-64 Integer Registers – 64 bits wide

19

Some History: IA32 Registers – 32 bits wide

20

x86-64 Assembly “Data Types”

● Integral data of 1, 2, 4, or 8 bytes (b, w, l, q)

● Floating point data, not covered in 351

○ Different registers for those (e.g., %xmm1, %ymm2)

○ Come from extensions to x86 (SSE, AVX, …)

● No aggregate types such as arrays or structs

○ Just contiguously allocate bytes in memory

● Two common syntaxes—Must know which you’re reading!

○ AT&T: used in our course, gnu tools (including gcc), …

○ Intel: used in Intel documentation, Intel tools, …

21

Instruction Sizes and Operands (Review)

● Size specifiers

○ b = 1-byte (“byte”)

○ w = 2-byte (“word”)

○ l = 4-byte (“long word”)

○ q = 8-byte (“quad word”)

○ If using registers, much match width

● Operand types

○ Immediate: constant value ($)

○ Register: 1 of 16 general-purpose registers (%)

○ Memory: consecutive bytes of memory at a computed address (())

Why is “word” 2 bytes? Because that was

the word size when x86 was new, and it has

to be maintained for backwards

compatibility.

22

Instruction Types (Review)

1. Transfer data between memory and a register

○ Load from memory -> register

■ %reg = Memory[address]

○ Store from register -> memory

■ Memory[address] = %reg

○ Note: cannot transfer between two memory locations in one instruction!

2. Perform arithmetic operation on register or memory data

○ Ex: c = a + b; z = x << y; i = h & g;

3. Control flow: what instruction to execute next

○ Unconditional jumps to/from procedures

○ Conditional branches

Remember: Memory

is indexed just like an

array of bytes!

23

Moving Data

● General form: mov_ <source>, <destination>

○ More of a “copy” than a “move”

○ Missing letter (_) is for the width specifier

Ex: movq %rax, %rbx

○ Copies the 8-byte value from register %rax into register %rbx

● Operand Combinations:

○ Immediate -> Register or Memory (copies Immediate value to location)

○ Register -> Register or Memory (copies data in register to location)

○ Memory -> Register (copies data in memory to register)

■ Can’t go from memory -> memory in a single instruction!

24

Some Arithmetic Operations

● Binary (two-argument) operations

○ Beware argument order!

■ src can be immediate,

register, or memory

■ dst only register or memory

■ Results always stored in dst

○ Maximum of one memory

operand!

○ No distinction between signed and

unsigned

■ Only arithmetic vs logical

shifts

Format Computation Notes

addq src, dst dst = dst + src

subq src, dst dst = dst - src

imulq src, dst dst = dst * src

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src Same as shlq

xorq src, dst dst = dst ̂src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

25

Practice Question

Which of the following are valid implementations of rcx = rax + rbx?

● movq %rax, %rcx
addq %rbx, %rcx

● xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx

● addq %rax, %rcx
addq %rbx, %rcx

● movq $0, %rcx
addq %rbx, %rcx
addq %rax, %rcx

26

Arithmetic Example

long simple_arith(long x, long y)
{
long t1 = x + y;
long t2 = t1 * 3;
return t2;

}

y += x;
y *= 3;

long r = y;
return r;

simple_arith:
addq %rdi, %rsi
imulq $3, %rsi
movq %rsi, %rax
ret

Register Uses

%rdi 1st arg (x)

%rsi 2nd arg (y)

%rax return value

27

Example of Basic Addressing Modes

long add_ptr(long* xp, long* yp)
{

long t0 = *xp;
long t1 = *yp;
return t0 + t1;

}

add_ptr:
movq (%rdi), %rdx
movq (%rsi), %rax
addq %rdx, %rax
ret

Compiler Explorer:

https://godbolt.org/z/zc4Pcq

● Parentheses = memory addressing

○ Treat the value in the register

as an address

28

https://godbolt.org/z/zc4Pcq

Understanding add_ptr() Register Variable

%rdi xp

%rsi yp

%rdx t0

%rax return

29

long add_ptr(long* xp, long* yp)
{

long t0 = *xp;
long t1 = *yp;
return t0 + t1;

}

add_ptr:
movq (%rdi), %rdx
movq (%rsi), %rax
addq %rdx, %rax
ret

Memory Addressing Modes

● General format: D(Rb,Ri,S) = Mem[Reg(Rb) + Reg(Ri)*S + D]

○ Rb = base register (any register)

○ Ri = index register (any register except %rsp)

○ S = scale factor (1, 2, 4, 8) - Why these numbers?

○ D = displacement value (immediate)

● Can leave any of these out:

○ D(Rb,Ri) - S=1

○ (Rb,Ri,S) - D=0

○ (Rb,Ri) - D=0, S=1

○ (,Ri,S) - D=0, Rb=0

○ etc…

30

Address Computation Examples %rdx 0xF000

%rcx 0x0100● 8-bit addresses

● Reminder: D(Rb,Ri,S) →Mem[Reg[Rb]+Reg[Ri]*S+D]
○ (ignoring memory addressing portion for this exercise)

Expression Address Computation Address

0x8(%rdx)

(%rdx, %rcx)

(%rdx, %rcx, 4)

0x80(, %rcx, 2)

31

Summary

● x86-64 is a complex (CISC) architecture

○ There are 3 types instructions

■ Data transfer

■ Arithmetic

■ Control flow

○ There are 3 types of operands

■ Registers (%)

■ Immediates ($)

■ Memory (())

● Registers are small, fast places to store memory

○ Limited number, each with their own name

32

	Slide 1: x86-64 Programming I
	Slide 2: Administrivia
	Slide 3: Review Questions
	Slide 4: Layers of Computing Revisited
	Slide 5: Programming Languages & Libraries: 351 View
	Slide 6: Lecture Topics
	Slide 7: Definitions
	Slide 8: Instruction Set Architectures (Review)
	Slide 9: What is a Register? (Review)
	Slide 10: Memory vs. Registers (Review)
	Slide 11: General ISA Design Decisions
	Slide 12: Instruction Set Philosophies (Review)
	Slide 13: Instruction Set Philosophies (Review) (pt 2)
	Slide 14: Mainstream ISAs
	Slide 15: Current Industry Trends - A RISC-y Shift
	Slide 16: Architecture Sits at the Hardware Interface
	Slide 17: Writing Assembly Code? In $CURRENT_YEAR???
	Slide 18: Lecture Topics
	Slide 19: x86-64 Integer Registers – 64 bits wide
	Slide 20: Some History: IA32 Registers – 32 bits wide
	Slide 21: x86-64 Assembly “Data Types”
	Slide 22: Instruction Sizes and Operands (Review)
	Slide 23: Instruction Types (Review)
	Slide 24: Moving Data
	Slide 25: Some Arithmetic Operations
	Slide 26: Practice Question
	Slide 27: Arithmetic Example
	Slide 28: Example of Basic Addressing Modes
	Slide 29: Understanding add_ptr()
	Slide 30: Memory Addressing Modes
	Slide 31: Address Computation Examples
	Slide 32: Summary

