
Floating Point
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang
https://0.30000000000000004.com

1

https://0.30000000000000004.com/

Administrivia

● HW4 due today (11:59pm)

● Due Wednesday, 7/3

○ RD7 (1pm)

○ HW5 (11:59pm)

○ Lab1a (11:59pm)

■ Late due date Friday, 7/5

● No class on Thursday

○ Video section on Panopto

● Quiz 1 released this Friday!

2

Lab1a Reminders

● Should compile without warnings, pass all tests and dlc.py

● Submit pointer.c and lab1Asynthesis.txt to Gradescope

● 1 submission per group

○ If you’re submitting with a partner, please add them to your submission

● Please wait for the autograder to finish so you can confirm it worked!

○ Don’t wait until the last minute to submit!

● Please remove debug print statements before submitting!

● Remember: 1-on-1 request form

3

https://docs.google.com/forms/d/e/1FAIpQLSd9kddBTX7zsxxCIQhLw4jgHDnm-1JBk7sz8DHHk2-Pe_fkoA/viewform

Quiz 1

● Out on Friday, 7/5, due Friday, 7/12 on Gradescope

● Covers everything up through floating point

● Open-note, open-book

● See the Exams page on the course website for practice materials

● You can discuss with classmates, but all work must be your own!

○ “Abbot Elementary Rule”: talk with other students, then do something else for a

while before writing your submission

○ i.e. brainstorming with others is fine, but you should not be writing your answers

together

● Staff can answer clarifying questions, but not content questions

○ Please make all quiz-related Ed questions private!

4

Review Questions

1. Convert 11.37510 to normalized binary scientific notation

1. What is the value (in decimal) encoded by the following floating-point

number?

0b 0 1000 0000 110 0000 0000 0000 0000 0000

5

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

Number Representation Revisited

● What can we represent in C so far?

○ Signed and unsigned integers

○ Characters

○ Addresses

● How do we encode the following?

○ Real numbers (ex: 3.14159)

○ Very large numbers (ex: 6.02*1023)

○ Very small numbers (ex: 6.26*10-34)

○ Special cases (ex: ∞, NaN)

6

Floating Point Topics

● Fractional binary numbers (fixed point)

● Floating point

○ IEEE standard

● Floating point operations and rounding

● Floating point in C

There are many more details we won’t cover (it’s a 58-page standard…)

○ Bonus slides at the end :)

7

Binary Representation of Fractions

● Let’s start by looking at base 10:
○ Each place represents a power of 10. Power decreases as you read left->right

○ Decimal point marks when the negative powers start

Ex:
102 101 100 10-1 10-2 10-3

1 2 3 . 4 5 6

● Base 2 is similar:

○ Every place to the right of the binary point represents a negative power of 2

Ex:
23 22 20 2-1 2-2 2-3

1 0 1 . 0 1 1

= 1*22 + 0*21 + 1*20 + 0*2-1 + 1*2-2 + 1*2-3 = 5.37510

8

Limits of Representation

● Even with an arbitrary number of bits, can only represent numbers of the form

x*2y

● Other rational numbers have infinite bit representations

Value Binary Representation

1/3 = 0.333333…10 0.01010101[01]…2

1/5 = 0.210 0.001100110011[0011]…2

1/10 = 0.110 0.0001100110011[0011]…2

9

Fixed Point Encoding

● Implied binary point between two bits in a number

● Two examples

1. Binary point is between bits 2 and 3

b7b6b5b4b3 (.) b2b1b0

2. Binary point is between bits 4 and 5

b7b6b5 (.) b4b3b2b1b0

● Which scheme is better?

10

Floating Point Representation (Review)

● Based on scientific notation

○ In decimal:

■ 12000000 -> 1.2 x 107

■ 0.0000012 -> 1.2 x 10-6

○ In binary:

■ 11000.000 -> 1.1 x 24

■ 0.00011 -> 1.1 x 2-4

● Divvy up the bits in our encoding

○ Sign (+/-)

○ Exponent

○ Mantissa (everything after the binary point)

11

Binary Scientific Notation (Review)

● Normalized form: exactly one (non-zero) bit to the left of the binary point

● Called “floating point” because the binary point “floats” to different parts of the

number (as opposed to fixed)

12

Floating Point History

● 1914: first design by Leonardo Torres y Quevedo

● 1940: implementations by Konrad Zuse, but not exactly

the same as the modern standard

● 1985: IEEE 754 standard

○ Primary architect was William Kahan, who won a

Turing Award for this work

○ Standardized bit encoding, well-defined behavior for

all operations

○ Still what we use today!

Kahan

13

IEEE Floating Point

● IEEE 754 (established 1985)

○ Developed to make numerically-sensitive programs portable

○ Specifies two things: a representation scheme and the result of operations

○ Supported by all major CPUs

● Two opposing concerns:

○ Scientists numerical analysts want them to be as real as possible

○ Engineers want them to be easy to implement and fast

○ Who won? Mostly scientists

■ Nice standards for rounding, overflow, underflow, but complex for hardware

■ Float operations can be an order of magnitude slower than integer ops!

● CPU speed commonly measured in FLOPS (float ops per second)

14

Floating Point Encoding (Review)

● Value = ±1.Mantissa * 2Exponent

● Bit fields: (-1)S * 1.M * 2E

● Representation scheme:

○ Sign bit (S): 0 is positive, 1 is negative

○ Mantissa (a.k.a. significand): the fractional part of the number in normalized form,

encoded in the bit vector M

○ Exponent: weighs the number by a (possible negative) power of 2, encoded in the

bit vector E

15

The Exponent Field (Review)

● Use biased notation

○ Read as unsigned, but with a bias of 2w-1-1 (127, for an 8-bit E field)

○ Exponent = E - bias E = Exponent + bias

● Why?

○ Makes floating point arithmetic easier

○ Somewhat compatible with two’s complement hardware

16

The Mantissa Field (Review)

● Implicit leading 1 before the binary point

○ There’s always a 1 there in normalized form, so we don’t need to encode it!

○ Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000

■ Read as 1.12 = 1.510, not 0.12 = 0.510

● Mantissa “limits”

○ Low values (near M = 0b00…00) are close to 2Exp

○ High values (near M = 0b11…11) are close to 2Exp+1

17

Normalized Floating Point Conversions

FP -> Decimal

1. Append bits of M to leading 1

2. Multiply by 2E-bias

3. “Multiply out” exponent by shifting

a. If exp < 0, shift right (logical) by

-exp

a. If exp > 0, shift left by exp

4. Multiply by sign (-1S)

5. Convert from binary to decimal

Decimal -> FP

1. Convert from decimal to binary

2. Convert to normalized form

a. Shift left or right (logical) until there’s

a single 1 before the binary point

b. Multiply by 2exp, where exp = number

of places shifted (negative for left

shift, positive for right)

3. S = 0 if positive, 1 if negative

4. E = exp + bias

5. M = bits after the binary point

18

Practice Question

Convert the decimal number -7.375 into floating point representation.

Challenge Question:

Find the value of the following sum in normalized binary scientific notation:

1.012*2
0 + 1.112*2

2

19

Special Cases

● But wait, what happened to zero?

○ Special case: E and M are all 0s

■ Two zeroes… but at least 0x00..00 is 0, like integers

● Other special cases: E = 0xFF

○ M = 0: +/- ∞

■ Ex: division by 0

■ Still works for comparisons!

○ M ≠ 0: NaN

■ Ex: 0/0, ∞-∞, imaginary numbers

■ Value of M tells you what the error was

■ Propagates through computations

20

Floating Point Topics

● Fractional binary numbers (fixed point)

● Floating point

○ IEEE standard

● Floating point operations and rounding

● Floating point in C

21

Precision and Accuracy

● Accuracy is a measure of the difference between the actual value of a

number and its computer representation

● Precision is a count of the number of bits in a computer word used to

represent a value
○ Capacity for accuracy

● High precision permits high accuracy but doesn’t guarantee it. It is

possible to have high precision but low accuracy.

Example: float pi = 3.14;

○ pi will be represented with all 24 bits of mantissa (highly precise), but still an

approximation

22

Need Greater Precision?

● 64 bits = double precision

● Exponent bias is now 210–1 = 1023

● Advantages

○ Greater precision (larger mantissa), greater range (larger exponent field)

● Disadvantages

○ More space used, slower to manipulate

23

Representation Limits

● Largest value (besides ∞)?

○ E = 0xFF has been taken!

○ E = 0xFE, M = 0b11…11 -> 1.1…12*2
127 = 2128 – 2104

■ Much bigger than the max int!

● Smallest (non-zero) value?

○ E = 0x00 has been taken!

○ E = 0x01, M = 0b00…00 -> 2-126

■ Normalization and implicit 1 are to blame

○ Another special case: denormalized numbers

■ E = 0, M ≠ 0 are

■ Replace implicit leading 1 with a 0

24

Floating Point Decoding Flow Chart

25

Distribution of Values (Review)

● Like integers, floats cannot represent every possible value

○ Overflow: the number we want to store is too large to be represented

● Floats have other problems too, due to finite precision:

○ Underflow: value is too small to represent

■ Between 0 and the smallest denormalized number

○ Rounding: we don’t have enough bits

■ Between two representable values

Floats can represent

very large or very

precise numbers, but not

both!

26

Representational Errors

● Overflow yields ±∞, underflow yields 0

● ±∞ and NaN can be used in operations

○ Result is usually still the same, but not always intuitive

● Floating point operations do not work like real math, due to rounding

○ Not associative

■ Ex: (3.14 + 10100)–10100 != 3.14+(10100–10100)

○ Not distributive

■ Ex: 100*(0.1 + 0.2) != 100*0.1 + 100*0.2

○ Not cumulative

■ Repeatedly adding a very small number to a very large one may do nothing

27

Why does this matter?

● 1982: Vancouver Stock Exchange 10% error in less than 2 years

● 1991: Patriot missile targeting error

○ Clock skew due to conversion from int to float

● 1994: Intel Pentium FDIV (float division) hardware bug ($475 million)

● 1996: Ariane 5 rocket exploded ($1 billion)

○ Overflow converting 64-bit float to 16-bit int

● 1997: USS Yorktown “smart” warship stranded

○ Divide by zero

28

Floating Point Topics

● Fractional binary numbers (fixed point)

● Floating point

○ IEEE standard

● Floating point operations and rounding

● Floating point in C

29

Floating Point in C

● Two common levels of precision

○ float 1.0f - single precision (32-bit)

○ double 1.0 - double precision (64-bit)

● #include <math.h> to get INFINITY and NAN constants

● #include <float.h> for additional constants

● Equality (==) comparisons between floating point numbers are tricky,

and often return unexpected results, so just avoid them!

30

Floating Point Conversions in C

● Casting between int, float, and double changes the bit representation!

● int -> float

○ May be rounded (not enough mantissa bits)

○ Overflow impossible

● int or float -> double

○ No rounding or overflow possible

● long -> double

○ Depends on word size (32-bit is exact, 64-bit may cause rounding)

● double or float -> int

○ Truncates fractional part (rounded towards zero)

○ Undefined when out of range or NaN, typically sets to TMin

31

Summary

● Floating point approximates real numbers using binary scientific notation

○ Exponent in biased notation

● Standard encoding is IEEE 754

○ Defines standard bit width for fields, behavior in operations, and special cases

● Floats also suffer from having a fixed bit width

○ Can get overflow, but also underflow and rounding

● Floating point arithmetic can have unexpected results!

○ Never test floats for equality

● Conversion between float and other data types can cause errors

○ Be especially careful when converting between int and float!

32

BONUS SLIDES
Some additional information about floating point

numbers. We won’t test you on this, but you may

find it interesting :)

33

Floating Point Rounding
This is extra

(non-testable)
material

● The IEEE 754 standard actually specifies different rounding modes:

1. Round to nearest, ties to nearest even number (standard)

2. Round toward +∞ (round up)

3. Round toward -∞ (round down)

4. Round toward 0 (truncate)

● In our tiny example (E = 4 bits, M = 3 bits) with standard rounding

○ Mantissa = 1.001 01 rounds to M = 0b001

○ Mantissa = 1.001 11 rounds to M = 0b010

○ Mantissa = 1.001 10 rounds to M = 0b010

○ Mantissa = 1.000 10 rounds to M = 0b000

34

Limits of Interest
This is extra

(non-testable)
material

● The following thresholds can help you get a sense of when certain outcomes

come into play, but don’t worry about the specifics

○ FOver = 2bias+1

■ Largest representable normalized number

○ FDenorm = 211-bias

■ Smallest representable normalized number

○ FUnder = 21-bias-m

■ m is the width of the mantissa field

■ Smallest representable denormalized number

35

Denormalized Numbers
This is extra

(non-testable)
material

● No leading 1

○ Uses implicit exponent of –126 even though E = 0x00

● Denormalized numbers close the gap between zero and the smallest

normalized number

○ Smallest norm: ± 1.0…02×2-126 = ± 2-126

○ Smallest denorm: ± 0.0…012×2-126 = ± 2-149

■ There is still a gap between zero and the smallest denormalized number

Much closer to zero!

36

Floating Point in the “Wild”
This is extra

(non-testable)
material

● 3 formats from IEEE 754 standard widely used in computer hardware and

languages

○ In C, called float, double, long double

● Common applications:

○ 3D graphics: textures, rendering, rotation, translation

○ “Big Data”: scientific computing at scale, machine learning

● Non-standard formats in domain-specific areas:

○ Bfloat16: training ML models;

range more valuable than precision

○ TensorFloat-32: Nvidia-specific

hardware for Tensor Core GPUs

Type

S
bits

E
bits

M
bits

Total
bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32

37

	Slide 1: Floating Point
	Slide 2: Administrivia
	Slide 3: Lab1a Reminders
	Slide 4: Quiz 1
	Slide 5: Review Questions
	Slide 6: Number Representation Revisited
	Slide 7: Floating Point Topics
	Slide 8: Binary Representation of Fractions
	Slide 9: Limits of Representation
	Slide 10: Fixed Point Encoding
	Slide 11: Floating Point Representation (Review)
	Slide 12: Binary Scientific Notation (Review)
	Slide 13: Floating Point History
	Slide 14: IEEE Floating Point
	Slide 15: Floating Point Encoding (Review)
	Slide 16: The Exponent Field (Review)
	Slide 17: The Mantissa Field (Review)
	Slide 18: Normalized Floating Point Conversions
	Slide 19: Practice Question
	Slide 20: Special Cases
	Slide 21: Floating Point Topics
	Slide 22: Precision and Accuracy
	Slide 23: Need Greater Precision?
	Slide 24: Representation Limits
	Slide 25: Floating Point Decoding Flow Chart
	Slide 26: Distribution of Values (Review)
	Slide 27: Representational Errors
	Slide 28: Why does this matter?
	Slide 29: Floating Point Topics
	Slide 30: Floating Point in C
	Slide 31: Floating Point Conversions in C
	Slide 32: Summary
	Slide 33
	Slide 34: Floating Point Rounding
	Slide 35: Limits of Interest
	Slide 36: Denormalized Numbers
	Slide 37: Floating Point in the “Wild”

