Floating Point
CSE 351 Summer 2024

Instructor:
Ellis Haker

Teaching Assistants:
Naama Amiel

Prove you are human:

Micah Chang

WELCOME TO
Shananda Dokka THE SECRET
Nikolas McNamee ROBOT INTERNET

Jiawel Huang https://0.30000000000000004.com

https://0.30000000000000004.com/

Administrivia

e HW4 due today (11:59pm)
e Due Wednesday, 7/3

o RD7 (1pm)

o HWS5 (11:59pm)

o Labla (11:59pm)

m Late due date Friday, 7/5

e No class on Thursday

o Video section on Panopto
e Quiz 1 released this Friday!

Labla Reminders

e Should compile without warnings, pass all tests and dlc.py
e Submit pointer.c and lablAsynthesis.txt to Gradescope

e 1 submission per group
o If you're submitting with a partner, please add them to your submission
e Please wait for the autograder to finish so you can confirm it worked!

o Don’t wait until the last minute to submit!
e Please remove debug print statements before submitting!
e Remember: 1-on-1 request form

https://docs.google.com/forms/d/e/1FAIpQLSd9kddBTX7zsxxCIQhLw4jgHDnm-1JBk7sz8DHHk2-Pe_fkoA/viewform

Quiz 1

Out on Friday, 7/5, due Friday, 7/12 on Gradescope

Covers everything up through floating point

Open-note, open-book

See the Exams page on the course website for practice materials
You can discuss with classmates, but all work must be your own!

o “Abbot Elementary Rule”: talk with other students, then do something else for a
while before writing your submission
o I.e. brainstorming with others is fine, but you should not be writing your answers
together
Staff can answer clarifying questions, but not content questions
o Please make all quiz-related Ed questions private!

Review Questions 21=05
22=0.25

1. Convert 11.375,, to normalized binary scientific not 23=0.125
g 4 2 L 0.5 01~ o \LS 3
L © l L. 0 L | — [L.eNell -2

) ru'a\ﬂ’f' V3 ke y-\" . s\VolY, Aewn ww-“ﬂg\-; by 7 D‘-‘" ool M. pn'biu-o-\ volw

1. What s the value (in decimal) encoded by the following floating-point
Lieaz 25 A =V 3 L -

c..\"
c W’k
ob 0 1000 0000 110 0000 0000 0000 0000 0000

. 12
pedrh vt ds ¥y Sl Yo i,z l\\ ,"s 5\
m..mh\.@ SR

number’?

Number Representation Revisited

e What can we representin C so far?
o Signed and unsigned integers
o Characters
o Addresses

e How do we encode the following?
o Real numbers (ex: 3.14159)
o Very large numbers (ex: 6.02*10%3)
o Very small numbers (ex: 6.26*10-34)
o Special cases (ex: ©, NaN)

Floating Point Topics

e Fractional binary numbers (fixed point)
Floating point

o |EEE standard
Floating point operations and rounding
Floating pointin C

There are many more details we won'’t cover (it's a 58-page standard...)

o Bonus slides at the end :)

Binary Representation of Fractions

e Let's start by looking at base 10:
o Each place represents a power of 10. Power decreases as you read left->right
o Decimal point marks when the negative powers start
10210 10° 101102103
EX:
- 12 3 4 5 6

e Base 2 is similar:

o Every place to the right of the binary point represents a negative power of 2
23 22 20 21 22 23
EX 701 011

= 1%22 4+ 0*21 + 1%20 + 0*2°1 + 1*2-2 + 1*2-3 = 5.375,,

Limits of Representation

e Even with an arbitrary number of bits, can only represent numbers of the form
X*2Y
e Other rational numbers have infinite bit representations

Value Binary Representation
1/3 = 0.333333...4, 0.01010101[01]...,
1/5 = 0.2, 0.001100110011[0011]...,
1/10 = 0.1, 0.0001100110011[0011]...,

Fixed Point Encoding k- vmet L enngle’

\

e Implied binary point between two bits in a number el

e Two examples b10.95
L=

1. Binary point is between bits 2 and 3

t,.,.l et le-t-los
b,bebebabs () bybiby, D ‘

2. Binary point is between bits 4 and 5 j‘:: \W‘ o
b,bgs () b,bsb,b; by v
e \Which scheme is better?
D“"’\«LSI- | e en ol \'\b'aw velu eq, b w/ lus ‘r&ufm\»

1 \er waere QR_U.‘:"OM, Lt o av-Lt) elcLdo NL-\'L:M g o 7.
Neo 2.-)/ ‘n\u\.“w. rro(-\\ crun , 56 et Lu'l- vme ,'.|..

feminlel:

Floating Point Representation (Review) s sk b = dhoces
wm beas v = divile \73\9

e Based on scientific notation
o In decimal:

m 12000000 ->1.2 x 107

m 0.0000012->1.2x10°

o In binary: . u
] r; L" < N
. 11000.000->11x2¢™ ot oy Troe wmelkdg g2

m 0.00011->1.1x 2% = T AT TNy 2

e Divvy up the bits in our encoding
o Sign (+/-)
o Exponent
o Mantissa (everything after the binary point)

R A (G-|—- n‘b\«v\- ‘r-) 7—, Se V““*lkq‘-') \7:) Loq'
fo 3,.\" bect Yo B aom_volve

Binary Scientific Notation (Review)

mantissa __exponent
1f012 X 2':\
binary point radix (base)

e Normalized form: exactly one (non-zero) bit to the left of the binary point
e Called “floating point” because the binary point “floats” to different parts of the
number (as opposed to fixed)

Floating Point History

e 1914: first design by Leonardo Torres y Quevedo
e 1940: implementations by Konrad Zuse, but not exactly
the same as the modern standard
e 1985: IEEE 754 standard
o Primary architect was William Kahan, who won a
Turing Award for this work
o Standardized bit encoding, well-defined behavior for
all operations

o Still what we use today!

IEEE Floating Point

e |EEE 754 (established 1985)
o Developed to make numerically-sensitive programs portable
o Specifies two things: a representation scheme and the result of operations
o Supported by all major CPUs
e Two opposing concerns:
o Scientists numerical analysts want them to be as real as possible
o Engineers want them to be easy to implement and fast
o Who won? Mostly scientists
m Nice standards for rounding, overflow, underflow, but complex for hardware
m Float operations can be an order of magnitude slower than integer ops!
e CPU speed commonly measured in FLOPS (float ops per second)

Floating Point Encoding (Review)

e Value = +1.Mantissa * 2&xponent
e Bitfields: (-1)>* 1.M * 2F
e Representation scheme:
o Sign bit (S): 0 is positive, 1 is negative
o Mantissa (a.k.a. significand): the fractional part of the number in normalized form,
encoded in the bit vector M
o Exponent: weighs the number by a (possible negative) power of 2, encoded in the

bit vector E
31 30 2322
&] v]

1 bit 8 bits 23 bits

The Exponent Field (Review)

e Use biased notation
o Read as unsigned, but with a bias of 2¥-1-1 (127, for an 8-bit E field)
o Exponent = E - bias «» E = Exponent + bias
e Why? Aoy kv 15 cong !
o Makes floating point arithmetic easier 2~ wadees oot compevison essier
o Somewhat compatible with two’s complement hardware

31 30 23 22 Q‘

S] M

1 bit 8 bits 23 bits

The Mantissa Field (Review)

e Implicit leading 1 before the binary point
o There’s always a 1 there in normalized form, so we don’t need to encode it!
o Example: 0b 0011 1111 1100 0000 0000 0000 OOO0O 0000
m Readas1.1,=1.5,,not0.1,=0.5
e Mantissa “limits”
o Low values (near M = 0b00...00) are close to 25
o High values (near M = 0b11...11) are close to 25®*!

31 30 23 22

S M

1 bit 8 bits 23 bits

Normalized Floating Point Conversions

FP -> Decimal

1.
2.
3.

Append bits of M to leading 1
Multiply by 2E-bias
“Multiply out” exponent by shifting
a. If exp <0, shift right (logical) by
-exp
a. If exp > 0, shift left by exp
Multiply by sign (-1°)
Convert from binary to decimal

Decimal -> FP

1. Convert from decimal to binary

2. Convert to normalized form
a. Shiftleft or right (logical) until there’s
a single 1 before the binary point
b. Multiply by 2¢*°, where exp = number
of places shifted (negative for left
shift, positive for right)
S = 0 if positive, 1 if negative
E = exp + bias
M = bits after the binary point

g hw

Practice Question

Liegs 774 0¥

Convert the decimal number -7.375 into floating point representation.
s

4 2 (a.4 019 o.11% .
| L l. © 1 S
52 \ (vu:‘s-\-:u-b I’O-\,[loQooow|y \ol\QO.. - 00 l
E=-1+v3=19zcLlvecoal B = }_\’0_‘.\00---“]
Challenge Question: 230 ol
Find the value of the following sum in normalized binary scientific notation:
=
1.01,%20 + 1.11,*22 ol + 11z (000 0t = | Vaoed, -2 |

7 1

Lol T,

Special Cases

e But wait, what happened to zero? sy merbude S
o Special case: E and M are all Os
m [wo zeroes... but at least 0x00..00 is 0O, like integers
e Other special cases: E = OxFF
o M=0:;+/-
m Ex: divisionby O
m Still works for comparisons!
o M #0: NaN
m Ex: 0/0, - imaginary numbers
m Value of M tells you what the error was
m Propagates through computations

Floating Point Topics

e Fractional binary numbers (fixed point)
e Floating point
o |EEE standard
e Floating point operations and rounding
e Floating pointin C

Precision and Accuracy

e Accuracy is a measure of the difference between the actual value of a
number and its computer representation
e Precision is a count of the number of bits in a computer word used to
represent a value
o Capacity for accuracy
e High precision permits high accuracy but doesn’t guarantee it. It is
possible to have high precision but low accuracy.

Example: float pi = 3.14;

o pi will be represented with all 24 bits of mantissa (highly precise), but still an
approximation

Need Greater Precision?

e 64 bits = double precision
e Exponent bias is now 210-1 = 1023
e Advantages
o Greater precision (larger mantissa), greater range (larger exponent field)
e Disadvantages
o More space used, slower to manipulate

63 62 5251
Is] ey [M (20 of 52) ﬂ]»

’[u M (32 of 52) ﬂ]

Representation Limits

e Largestvalue (besides «)?

o E = OxFF has been taken!
o E=0xFE, M=0b11...11 ->1.1...1,%2127 = 2128 _ 2104

m Much bigger than the max int!
Gaps! P
e Smallest (non-zero) value? ps: |
o E = 0x00 has been taken! _00 / \ +00
o E =0x01, M =0b00...00 -> 2126 e EI“ tH
-l—u»cgu-b\.hlf

m Normalization and implicit 1 are to blame

o Another special case: denormalized numbers
e N

m E=0,M#0are £ i\ eeekd on 0y g0 velie iptomn
m Replace implicit leading 1 with a 0

Floating Point Decoding Flow Chart

FP Bits

all 1/ What is the
value of M?)

What is the]
value of E? J

all 0’s

all 0’s
(—1)°x00
anxthlng) NaN
else
| (—1)°x0.Mx21~bias

= special case

anything else

>

(—1)SX1. szE—bias

Distribution of Values (Review)

e Like integers, floats cannot represent every possible value
o Overflow: the number we want to store is too large to be represented

e Floats have other problems too, due to finite precision: Floats can represent
o Underflow: value is too small to represent very large or very
= Between 0 and the smallest denormalized number | P'°<"° nubrggﬁrs’ but not
o Rounding: we don’t have enough bits |

m Between two representable values %

—k & & A—h—A A —AkAhA MM A A A A A& A4 & 3 A—

-15 -10 -5 0 5 10 15
Denormalized A Normalized Infinity ‘

Representational Errors

e Overflow yields £, underflow yields 0

e % and NaN can be used in operations
o Resultis usually still the same, but not always intuitive
e Floating point operations do not work like real math, due to rounding
o Not associative
m Ex: (3.14 + 10100)-10100 1= 3,14+ (10100-1(100)
o Not distributive
m Ex: 100*(0.1 + 0.2) !=100*%0.1 4+ 100*0.2
o Not cumulative
m Repeatedly adding a very small number to a very large one may do nothing

Why does this matter?

1982: Vancouver Stock Exchange 10% error in less than 2 years
1991: Patriot missile targeting error

o Clock skew due to conversion from int to float
1994: Intel Pentium FDIV (float division) hardware bug ($475 million)
1996: Ariane 5 rocket exploded ($1 billion)

o Overflow converting 64-bit float to 16-bit int
e 1997: USS Yorktown “smart” warship stranded
o Divide by zero

Floating Point Topics

e Fractional binary numbers (fixed point)
e Floating point

o |EEE standard
e Floating point operations and rounding
e Floating pointin C

Floating Point in C

e Two common levels of precision
o float 1.0f - single precision (32-bit)
o double 1.0 - double precision (64-bit)
e #include <math.h> to get INFINITY and NAN constants
e #include <float.h> for additional constants
e Equality (==) comparisons between floating point numbers are tricky,
and often return unexpected results, so just avoid them!

Floating Point Conversions in C

Casting between int, float, and double changes the bit representation!
int -> float
o May be rounded (not enough mantissa bits)
o Overflow impossible
e 1int or float -> double
o No rounding or overflow possible
e long -> double
o Depends on word size (32-bit is exact, 64-bit may cause rounding)
® double or float -> 1int
o Truncates fractional part (rounded towards zero)
o Undefined when out of range or NaN, typically sets to TMin

Summary

Floating point approximates real numbers using binary scientific notation
o Exponentin biased notation
Standard encoding is IEEE 754
o Defines standard bit width for fields, behavior in operations, and special cases
Floats also suffer from having a fixed bit width
o Can get overflow, but also underflow and rounding
Floating point arithmetic can have unexpected results!
o Never test floats for equality
Conversion between float and other data types can cause errors
o Be especially careful when converting between int and float!

BONUS SLIDES

Some additional information about floating point
numbers. We won't test you on this, but you may
find it interesting :)

. .] This is extra
Floating Point Rounding [mon-testable)]

material

e The IEEE 754 standard actually specifies different rounding modes:
1. Round to nearest, ties to nearest even number (standard)
2. Round toward +< (round up)
3. Round toward - (round down)
4. Round toward O (truncate)
e In our tiny example (E = 4 bits, M = 3 bits) with standard rounding
o Mantissa =1.001 01 rounds to M = 0b001

o Mantissa = 1.001 11 rounds to M = 0b010 S E M
o Mantissa = 1.001 10 rounds to M = 0b010 1 4 3
o Mantissa = 1.000 10 rounds to M = 0b000

. . This is extra
Limits of Interest [mon-testable)]

material

e The following thresholds can help you get a sense of when certain outcomes

come into play, but don’t worry about the specifics
o FOver = 2biastl
m Largest representable normalized number
o FDenorm = 2]1-bias
m Smallest representable normalized number
o FUnder = 2%-bias-m
m M is the width of the mantissa field
m Smallest representable denormalized number

. This is extra
Denormalized Numbers [mon-testable)]

material

e Noleadingl
O Uses implicit exponent of =126 even though E = 0x00

e Denormalized numbers close the gap between zero and the smallest
normalized number

O Smallest norm: + 1.0...0,x2126 = + 2-126
Much closer to zero!
9

O Smallest denorm: + 0.0...01,%2-126 = + 2-14

= There is still a gap between zero and the smallest denormalized number

Floating Point in the “Wild” [Jé‘it‘;‘iféf‘e)}

material
e 3 formats from IEEE 754 standard widely used in computer hardware and
languages
o In C, called float, double, long double
e Common applications: Type o o Tufi:z'
o 3D graphics: textures, rendering, rotation, translation T — PR ET—
o “Big Data”: scientific computing at scale, machine learning . —— T s 7 1
e Non-standard formats in domain-specific areas: Tensorfloat:32 1 8 10 19
o Bfloat16: training ML models; Single-precision 18 23 32

range more valuable than precision

o TensorFloat-32: Nvidia-specific
hardware for Tensor Core GPUs

	Slide 1: Floating Point
	Slide 2: Administrivia
	Slide 3: Lab1a Reminders
	Slide 4: Quiz 1
	Slide 5: Review Questions
	Slide 6: Number Representation Revisited
	Slide 7: Floating Point Topics
	Slide 8: Binary Representation of Fractions
	Slide 9: Limits of Representation
	Slide 10: Fixed Point Encoding
	Slide 11: Floating Point Representation (Review)
	Slide 12: Binary Scientific Notation (Review)
	Slide 13: Floating Point History
	Slide 14: IEEE Floating Point
	Slide 15: Floating Point Encoding (Review)
	Slide 16: The Exponent Field (Review)
	Slide 17: The Mantissa Field (Review)
	Slide 18: Normalized Floating Point Conversions
	Slide 19: Practice Question
	Slide 20: Special Cases
	Slide 21: Floating Point Topics
	Slide 22: Precision and Accuracy
	Slide 23: Need Greater Precision?
	Slide 24: Representation Limits
	Slide 25: Floating Point Decoding Flow Chart
	Slide 26: Distribution of Values (Review)
	Slide 27: Representational Errors
	Slide 28: Why does this matter?
	Slide 29: Floating Point Topics
	Slide 30: Floating Point in C
	Slide 31: Floating Point Conversions in C
	Slide 32: Summary
	Slide 33
	Slide 34: Floating Point Rounding
	Slide 35: Limits of Interest
	Slide 36: Denormalized Numbers
	Slide 37: Floating Point in the “Wild”

