
Integers II
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Announcements, Reminders

● Due Today:

○ HW 3 (11:59pm)

● Due Monday, 7/1

○ RD 6 (1pm)

○ HW 4 (11:59pm)

● Lab 1b releases today, due 7/10

○ Bit manipulation on a custom encoding scheme

○ Bonus slides at the end might be helpful :)

2

Review Questions

● What is the value and encoding of Tmin (minimum signed value) for a fictional

7-bit wide integer data type?

● For unsigned char uc = 0xB3;, what the result (in hex) of the cast

(unsigned short)uc?

● What is the result of the following expressions?

○ (signed char)uc >> 2

○ (unsigned char)uc >> 3

3

Integers

● Binary representation of integers

○ Unsigned and signed

○ Casting in C

○ Arithmetic operations

● Consequences of finite width representations

○ Overflow

● Shifting operations

4

Values to Remember

Unsigned

● UMin = 0

○ 0b00…00

● UMax = 2w-1

○ 0b11…11

Signed (2’s Complement)

● TMin = -2w-1

○ 0b10…00

● TMax = 2w-1 - 1

○ 0b01…11

Example: if w = 64 Hex Decimal

UMax FF FF FF FF FF FF FF FF 18,446,744,073,709,551,615

TMax 7F FF FF FF FF FF FF FF 9,223,372,036,854,775,807

UMin 00 00 00 00 00 00 00 00 0

TMin 80 00 00 00 00 00 00 00 -9,223,372,036,854,775,808

5

Signed/Unsigned Conversion Visualized

4-bit example

6

Signed/Unsigned Conversion Visualized (pt 2)

4-bit example

7

C Integer Casting (Review)

● Bits are unchanged, just interpreted differently
○ Ex:

int tx, ty;

unsigned int ux, uy;

● Explicit casting:
○ Ex:

tx = (int)ux;
uy = (unsigned int)ty;

● Implicit casting can occur during assignments or function calls:
○ Ex:

tx = ux;

uy = ty;

Common source of bugs!

8

Casting Surprises (Review)

● Integer literals (constants)
○ By default, treated as signed ints

○ Hex constants already have an explicit binary representation

○ Use “U” (or “u”) suffix to explicitly force unsigned

○ Ex: 4294967259u

● Expression Evaluation
○ When you mixed unsigned and signed in a single expression, then signed values are implicitly

cast to unsigned

○ Including comparison operators <, >, ==, <=, >=

○ Yeah, no idea why. Thanks, C…

9

Sign Extension (Review)

● Given a w-bit integer, how can we extend it to a (w+k)-bit integer while

keeping the value the same?

○ Unsigned - pad with 0s

■ Ex: 0b1000 = 0b00001000 = 8

○ Signed - pad with the most significant bit

■ Ex: 0b1000 = 0b11111000 = -8

10

Two’s Complement Arithmetic

● Same as unsigned!
○ Simplifies hardware, no special algorithm needed

○ Just add as normal, then discard the highest carry bit

■ Modular addition: result = sum modulo 2w

Example:

0011 = 3
+0001 = 1
0100 = 4

1111
1101 = -3

+1111 = -1
11100 = -4

carry

11

Why Does Two’s Complement Work?

● For all representable numbers x, we theoretically want additive inverse:
○ i.e. (bit representation of x) + (bit representation of -x) = 0

● What are the 8-bit negative encodings for the following?

00000001
+ ????????

00000000

00000010
+ ????????

00000000

11000011
+ ????????

00000000

12

Why Does Two’s Complement Work? (pt 2)

● For all representable numbers x, we theoretically want additive inverse:
○ i.e. (bit representation of x) + (bit representation of -x) = 0

● What are the 8-bit negative encodings for the following?

00000001
+ 11111111

00000000

00000010
+ 11111110

00000000

11000011
+00111101
00000000

These are the bitwise complement plus 1!
-x == ~x + 1

13

Integers

● Binary representation of integers

○ Unsigned and signed

○ Casting in C

○ Arithmetic operations

● Consequences of finite width representations

○ Overflow

● Shifting operations

14

Arithmetic Overflow (Review)

● What happens if a calculation produces a result that can’t be represented in

the current encoding scheme? Overflow!

○ Remember: fixed width integers can’t represent every possible number

○ Occurs in both signed and unsigned

○ Can occur in both positive and negative directions

● Both C and Java ignore overflow exceptions

○ You end up with a bad value in your program and no indication/warning

15

Overflow: Unsigned

● Addition: drop carry bit (result is 2w too small)

● Subtraction: “borrow” extra bit (result is 2w too large)

Occurs when result is less than both

operands for addition, or greater than

for subtraction

16

1111 = 15

+ 0001 = 1

10000 = 160

0001 = 1

- 0010 = 2

= -1

1

1111 15

Overflow: Signed

● Positive addition: (+) + (+) = (-)

0110 = 6

+ 0011 = 3

1001 = -7???

● Negative addition (i.e. subtraction): (-) + (-) = (+)

1001 = -7

- 0011 = 3

0110 = 6???

Occurs when both operands for an

addition have the same sign, and

result doesn’t match

17

Why does this matter?

● 1985: Therac-25 radiation therapy machine

○ Overdoses of radiation due to arithmetic overflow on 1-byte safety flag

● 2000: Y2K problem

○ Limited representation (2-digit decimal year)

○ Similar issue will occur with Unix time in 2038!

● 2013: Deep impact spacecraft lost

○ Suspected integer overflow from storing time as

tenth-seconds in unsigned int

■ Lost on 8/11/13, 00:38:49.6

18

Integers

● Binary representation of integers

○ Unsigned and signed

○ Casting in C

○ Arithmetic operations

● Consequences of finite width representations

○ Overflow

● Shifting operations

19

Shift Operations (Review)

● Move all bits left or right, extra bits “fall off” the end

● Left shift by n positions (x << n)

○ Lose the most-significant n bits, fill in the least-significant n bits with 0s

● Right shift by n positions (x >> n)

○ Lose the least-significant n bits

○ Unsigned, use logical: fill with most-significant n bits with 0s

○ Signed, use arithmetic: replicate the previous most-significant bit

Ex: 0x22

x 0010 0010

x << 3 0001 0000

(logical) x >> 2 0000 1000

(arithmetic) x>> 2 0000 1000

Ex: 0xA2

x 1010 0010

x << 3 0001 0000

(logical) x >> 2 0010 1000

(arithmetic) x>> 2 1110 1000

20

Shift Operations (Review) (pt 2)

● Arithmetic

○ Left shift (x << n) == multiply by 2n

○ Right shift (x >> n) == divide by 2n

■ For signed values, logical right shift preserves the sign

○ Fun fact: Shifting is often faster than the general multiply and divide operations!

● Notes:

○ Shifts by less than 0 or more than w (width of the variable) are undefined

■ i.e. we don’t know what will happen!

○ In Java, arithmetic shift is >>, logical is >>>

21

Left Shifting, 8-bit Example

● Shifting can cause overflow!

● In theory x << n should be x*2n

Code Binary Signed Unsigned Theoretical Value

x = 25 00011001 25 25 25

L1 = x << 2 00 01100100 100 100 100

L2 = x << 3 000 11001000 -56 200 200

L3 = x << 4 0001 10010000 -112 114 400

Signed overflow

Unsigned

overflow

22

Right Shifting, 8-bit Example

● Unsigned = logical shift

● In theory, x >> n should be x÷2n

Code Binary Unsigned Theoretical Value

x = 240u 11110000 240 240

R1 = x >> 3 00011110 000 30 30

R2 = x >> 5 00000111 10000 7 7.5?

23

Right Shifting, 8-bit Example (pt 2)

● Signed = arithmetic shift

● In theory, x >> n should be x÷2n

Code Binary Unsigned Theoretical Value

x = -16 11110000 -16 -16

R1 = x >> 3 11111110 000 -2 -2

R2 = x >> 5 11111111 10000 -1 -0.5?

24

Undefined Behavior in C

● Not defined in C standard, may get different behavior depending on your OS,

architecture, compiler, etc.

● How much undefined behavior have we talked about in just the last few

lectures?

○ Shifting by more than size of type

○ Indexing arrays out of bounds

○ Using a variable before initializing (mystery data)

○ … and there will be more!

25

C Language

● Development began in 1971, standardized in 1978

○ Developed to write Unix (precursor to Linux and MacOS)

● Computers were much more limited in the 70s!

● Computer users were also very different!

○ Not as accessible

○ Computers were “for experts”

● Goals:

○ Portability

○ Performance

● Non-Goals:

○ Safety

○ Ease

26

Summary

● Casting between signed and unsigned in C

○ Bit pattern remains the same, just interpreted differently

○ Cast can be explicit or implicit

● We can represent a limited number of values in w bits

○ When we exceed the limit (in either direction), we get overflow

● Shifting is a useful bitwise behavior

○ Can be used to remove certain bits (similar to masking), or in place of multiplication

○ Right shift can be logical or arithmetic

■ Logical pads with 0s, used for unsigned

■ Arithmetic pads with MSB, used for signed

27

BONUS SLIDES
Some examples of using shift operators in combination

with bitmasks, which you may find helpful for Lab 1b.

● Extract the 2nd most significant byte of an int

● Extract the sign bit of a signed int

● Conditionals as Boolean expressions

28

Practice Question 1

● Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following

expression evaluate to?

○ UMin = 0, UMax = 255, TMin = -128, TMax = 127

127 < (signed char) 128u

29

Practice Questions 2

● For the following additions, did signed and/or unsigned overflow occur?

○ 0x27 + 0x81

○ 0x7F + 0xD9

● Helpful values (assuming 8-bit integers):

○ 0x27 = 39 (signed) = 39 (unsigned)

○ 0xD9 = -39 (signed) = 217 (unsigned)

○ 0x7F = 127 (signed) = 127 (unsigned)

○ 0x81 = -127 (signed) = 129 (unsigned)

30

Exploration Questions

For the following expressions, find a value of signed char x,

if there exists one, that makes the expression True.

● Assume we are using 8-bit integers:

○ x == (unsigned char) x

○ x >= 128U

○ x != (x>>2)<<2

○ x == -x

■ Hint: there are two solutions

○ (x < 128U) && (x > 0x3F)

31

Using Shifts and Masks

● Extract the 2nd most significant byte of an int:

○ First shift, then mask: (x>>16) & 0xFF

x 00000001 00000010 00000011 00000100

x>>16 00000000 00000000 00000001 00000010

0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

○ Or first mask, then shift: (x & 0xFF0000)>>16

x 00000001 00000010 00000011 00000100

0xFF0000 00000000 11111111 00000000 00000000

X & 0xFF0000 00000000 00000010 00000000 00000000

(x & 0xFF)>>16 00000000 00000000 00000000 00000010

32

Using Shifts and Masks (pt 2)

● Extract the sign bit of a signed int:

○ First shift, then mask: (x>>31) & 0x1

■ Assuming arithmetic shift here, but this works in either case

■ Need mask to clear 1s possibly shifted in

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

33

Using Shifts and Masks (pt 3)

● Conditionals as Boolean expressions

○ For int x, what does (x<<31)>>31 do?

○ Can use in place of conditional:

■ In C: if(x) {a=y;} else {a=z;} is the same as…

■ a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000

34

	Slide 1: Integers II
	Slide 2: Announcements, Reminders
	Slide 3: Review Questions
	Slide 4: Integers
	Slide 5: Values to Remember
	Slide 6: Signed/Unsigned Conversion Visualized
	Slide 7: Signed/Unsigned Conversion Visualized (pt 2)
	Slide 8: C Integer Casting (Review)
	Slide 9: Casting Surprises (Review)
	Slide 10: Sign Extension (Review)
	Slide 11: Two’s Complement Arithmetic
	Slide 12: Why Does Two’s Complement Work?
	Slide 13: Why Does Two’s Complement Work? (pt 2)
	Slide 14: Integers
	Slide 15: Arithmetic Overflow (Review)
	Slide 16: Overflow: Unsigned
	Slide 17: Overflow: Signed
	Slide 18: Why does this matter?
	Slide 19: Integers
	Slide 20: Shift Operations (Review)
	Slide 21: Shift Operations (Review) (pt 2)
	Slide 22: Left Shifting, 8-bit Example
	Slide 23: Right Shifting, 8-bit Example
	Slide 24: Right Shifting, 8-bit Example (pt 2)
	Slide 25: Undefined Behavior in C
	Slide 26: C Language
	Slide 27: Summary
	Slide 28
	Slide 29: Practice Question 1
	Slide 30: Practice Questions 2
	Slide 31: Exploration Questions
	Slide 32: Using Shifts and Masks
	Slide 33: Using Shifts and Masks (pt 2)
	Slide 34: Using Shifts and Masks (pt 3)

