Integers Il
CSE 351 Summer 2024

Instructor:
Ellis Haker

Teaching Assistants:

Naama Amiel
Micah Chang
Shananda Dokka

Nikolas McNamee
Jiawei Huang

Announcements, Reminders
e Due Today:
o HW 3 (11:59pm)
e Due Monday, 7/1
o RD6 (1pm)
o HW4 (11:59pm)
e Lab 1b releases today, due 7/10

o Bit manipulation on a custom encoding scheme

o Bonus slides at the end might be helpful :)

Review Questions

e What is the value and encoding of Tmin (minimum signed value) for a fictional
7-bit wide integer data type? cwie Lz logo o0
\® velve = =203~ (4 |
} —_
e Forunsigned char uc = 0xB3j;, what the result (in hex) of the cast

(unsigned sf;ort)uc? o “"“‘:S"""L' TRARSLEN spece i i O "'lfM——l

1k

e What is the result of the following expressions? 0#5%= <l loll oall

. ; L= gel v/ not-aiagw Lok Wi do 1\ Lol 6o
o (signed char)uc >> 2 sigrei={ 9 :.IS;ET(

O (unsigned char)uc >> 3 “w".ﬁ"""l > ?,L w/ O & o\l oaoiello
:Ic»x\(o

————"

Integers

e Binary representation of integers
o Unsigned and signed
o Castingin C

o Arithmetic operations
e Consequences of finite width representations
o Overflow

e Shifting operations

Values to Remember

Unsigned

e UMInN=0
o 0b00...00
e UMax =2%-1
o 0b11...11

Example: if w = 64

UMax

Signed (2’s Complement)

e TMin =-2wl1
o 0b10...00

o TMax=2w1.1
o 0b01...11

Hex
FF FF FF FF FF FF FF FF

Decimal

18,446,744,073,709,551,615

TMax

7F FF FF FF FF FF FF FF

9,223,372,036,854,775,807

UMin

00 00 00 00 00 00 00 00

0

TMin

80 00 00 00 00 00 00 00

-9,223,372,036,854,775,808

Signed/Unsigned Conversion Visualized

-\ \«'b‘r w~{
=1111 UMax
wvt ':‘jr‘l \
w-—x -
4-bit example v Lol ® 01
B _ \' / ® TMax +1 Unsigned
TMax| @ ® TMax Range
v-,\,.-y_ u\,-ut
Lo Uff—'\" ;—/—%
‘)!-r\-c..wu) or i k\"-' el
2’s Complement oL@ ® 0/UMin
Range -1 0—/]

0000 =0 i w Lt

TMin \ 1000 =THiw '~ 24 oty s THeg+\ ‘v w-s-'yv.\..

Signed/Unsigned Conversion Visualized (pt 2)

vt O M iw

4-bit example

different value <

> same value

C Integer Casting (Review)

e Bits are unchanged, just interpreted differently
o Ex:

int tx, ty;
unsigned int ux, uy;
e EXxplicit casting:
o Ex:

tx = (int)ux; /4;;zi////’
uy = (unsigned 1int)ty;

e |mplicit casting can occur during assignments or function calls:
o EX:

Common source of bugs!

tX = ux;
uy = ty;

Casting Surprises (Review)

e Integer literals (constants) 4
O By default, treated as signed ints
O Hex constants already have an explicit binary representation
o Use “U” (or “u”) suffix to explicitly force unsigned ‘ ®
o Ex: 4294967259u

® Expression Evaluation

O When you mixed unsigned and signed in a single expression, then signed values are implicitly
cast to unsigned

o Including comparison operators <, >, ==, <=, >=
Yeah, no idea why. Thanks, C...

Sign Extension (Review)

e Given a w-bit integer, how can we extend it to a (w+Kk)-bit integer while

keeping the value the same?
o Unsigned - pad with Os
m Ex: 0b1000 = 0b00001000 =8
o Signed - pad with the most significant bit
m Ex: 0b1000 = 0b11111000 = -8 < w— >

Frun (—t,(Jr oA~ é,b“' w\“t T\s\. W'} 'ﬁ'— ‘Q s"lM-)

I va """"

el 100z <y

| l10as - -\L+8=-¢ X! o0 0@ o0 0
|\ \ypo -

- .’7,7,+-l(.4'$_-_-_ -2 I > W

Two’s Complement Arithmetic

e Same as unsigned!
o Simplifies hardware, no special algorithm needed
o Just add as normal, then discard the highest carry bit
m Modular addition: result = sum modulo 2%

Example: __ carry
1111
0011 = 3 1101 = -3
+0001 = 1 +1111 = -1
0100 = 4 +1100 = -4

Why Does Two’s Complement Work?

e For all representable numbers x, we theoretically want additive inverse:
o i.e. (bit representation of x) + (bit representation of -x) =0

e \What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 22222227 + 22222227 + 22222227

01010J0J01010]0] 01010J0J01010]0] 01010J0J01010]0]

Why Does Two’s Complement Work? (pt 2)

e For all representable numbers x, we theoretically want additive inverse:
o i.e. (bit representation of x) + (bit representation of -x) =0

e What areethe 8-bit negative encodings for the following?

SNoo
Lo\
' | lyu-u's
([
OOOOOOOl OOOO00O10 11000011
+ 11111111 + 11111110 +00111101
OOOOOO006 OOOOOO06 (0Jo10J010J0J0I0]

-x == ~x + 1

[These are the bitwise complement plus 1!}

Integers

e Binary representation of integers
o Unsigned and signed
o Castingin C
o Arithmetic operations
e Consequences of finite width representations

o Overflow

e Shifting operations

Arithmetic Overflow (Review)

e What happens if a calculation produces a result that can’t be represented in

the current encoding scheme? Overflow!
o Remember: fixed width integers can’t represent every possible number
o Occurs in both signed and unsigned
o Can occur in both positive and negative directions
e Both C and Java ignore overflow exceptions
o You end up with a bad value in your program and no indication/warning

Overflow: Unsi gn ed Occurs when result is less than both

operands for addition, or greater than

e Addition: drop carry bit (result is 2% too small) for subtraction
1111 = 15 «—
+ 0001 B ! 151111 Eooooo 1
#0000 - Yoo 13 / 1110 0001 \ >

1101 0010

e Subtraction: “borrow” extra bit (result is 2% too large) *2 [1100 0011 | 3
7 Unsigned
. L. 10001 — 1 1111011 0100 | 4
o “° 1010 0101
okl Lo = 0010 - g 10\ 1001 o110 / 5
fo bermw fgw 1111 = 7{15 9 1000 0111 6

i B et Acarcted 8 7

Overflow: Signhed

e Positive addition: (+) + (+) = (-)

0110 = 0
+ 0011 = 3
1001 = -772727

e Negative addition (i.e. subtraction): (-) + (-) = (+)

Srrt—vs 1001 = -/
q‘—: \'3 - 0011 = 3
o 0110 = 6227

5llo (4:_|rm3 (" én.d....}- 0#)

Occurs when both operands for an
addition have the same sign, and
result doesn’t match

1111 0000

1110 0001
1101 0010

1100 Two's 0011
_s\1011 Complement 0100

1010 0101
1001 0110
1000 . 0111

. Wor
Why does this matter? b e Fy SL UV O\
T6 et =0 LS
vu&\uv‘
e 1985: Therac-25 radiation therapy machine ¢
o Overdoses of radiation due to arithmetic overflow on 1-byte safety flag \i f-»:'{';'v_.

e 2000: Y2K problem Lhoced on T o ":_'":. N
o Limited representation (2-digit decimal year) / \/\’\A‘:‘j\\ patd Ko v
o Similar issue will occur with Unix time in 2038!
e 2013: Deep impact spacecraft lost RE ME MBER
o Suspected integer overflow from storing time as
tenth-seconds in unsigned int Turn your computer off
m Loston 8/11/13, 00:38:49.6 before midnighf on

g
U381 Yq. 6 ig Ha lewt 12/31/99.

ve (.rr—wu‘-vl.\ ko

Integers

e Binary representation of integers
o Unsigned and signed
o Castingin C
o Arithmetic operations
e Consequences of finite width representations

o Overflow

e Shifting operations

Shift Operations (Review)

e Move all bits left or right, extra bits “fall off” the end
e Left shift by n positions (x << n)

o Lose the most-significant n bits, fill in the least-significant n bits with Os
e Right shift by n positions (x >> n)

o Lose the least-significant n bits

o Unsigned, use logical: fill with most-significant n bits with Os
o Signed, use arithmetic: replicate the previous most-significant bit

X 0010 0010 X 1010 0010
Ex: Ox22 | x << 3 0001 0000 Ex: OXA2 | << 3 0001 0000
(logical) x >> 2 0000 1000 (logical) x >> 2 0010 1000
(arithmetic) x>> 2 | Q000 1000 (arithmetic) x>> 2 | 1110 1000

W
Shift Operations (Review) (pt 2) _ v b lo, wrdkdy /oibls fo
ernt 3 2| =30 ;) 3 L4290 , ¢
e Arithmetic
o Leftshift (x << n)==multiply by 2"
o Right shift (x >> n) ==divide by 2"
m For signed values, logical right shift preserves the sign
o Fun fact: Shifting is often faster than the general multiply and divide operations!
e Notes:
o Shifts by less than 0 or more than w (width of the variable) are undefined
m i.e. we don’t know what will happen!
o InJava, arithmetic shiftis >>, logical is >>>

Left Shifting, 8-bit Example

e Shifting can cause overflow!
e Intheory x << n should be x*2" Signed overflow

Signed Unsigned |Theoretical Value

x = 25 00011001 25 25 25
L1 = x << 2 00 01100100 100 / 100 100 Unsigned
overflow
L2 = x << 3 000 11001000 56 / 200 200 ol
A'/
L3 = x << 4 | 0001 10010000 114 400

Right Shifting, 8-bit Example

e Unsigned = logical shift
e Intheory, x >> n should be x+2"

Binary Unsigned |Theoretical Value
X = 240u 11110000 240 240
R1L = x > 3 00011110 000 30 30
R2 = x >> 5 | 00000111 10000 7 7.57

Right Shifting, 8-bit Example (pt 2)

e Signed = arithmetic shift
e Intheory, x >> n should be x+2"

Binary Unsigned |Theoretical Value
X = -16 11110000 -16 -16
RL =x >3 11111110 000 -2 -2
R2 = x >>5 11111111 10000 -1 -0.5?

Undefined Behavior in C

e Not defined in C standard, may get different behavior depending on your OS,
architecture, compiler, etc.

e How much undefined behavior have we talked about in just the Iast few
lectures? o\

o Shifting by more than size of type
o Indexing arrays out of bounds
o Using a variable before initializing (mystery data)
o ... and there will be more! 1
PROGRAMMIN
LANGUAGE

caThisihadihoyjcan hold so&ucn

e undefined hehaviour init

C Language

e Development beganin 1971, standardized in 1978
o Developed to write Unix (precursor to Linux and MacOS)
e Computers were much more limited in the 70s!
e Computer users were also very different!
o Not as accessible
o Computers were “for experts”
e Goals:
o Portability
o Performance
e Non-Goals:

o Safety
o Ease

Summary

e Casting between signed and unsigned in C
o Bit pattern remains the same, just interpreted differently
o Cast can be explicit or implicit
e We can represent a limited number of values in w bits
o When we exceed the limit (in either direction), we get overflow

e Shifting is a useful bitwise behavior
o Can be used to remove certain bits (similar to masking), or in place of multiplication
o Right shift can be logical or arithmetic
m Logical pads with Os, used for unsigned
m Arithmetic pads with MSB, used for signed

BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

e Extract the 2" most significant byte of an int
e Extract the sign bit of a signed int

e Conditionals as Boolean expressions

28

Practice Question 1

e Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following
expression evaluate to?
o UMin = 0, UMax = 255, TMin = -128, TMax = 127

127 < (signed char) 128u '
oLloood 6de ~ -1 fn Ve ¥
(27F ¢ -\ 5 Fee

p—

29

Practice Questions 2

e For the following additions, did signed and/or unsigned overflow occur?

- 39-123- -8F, or Y + Ntz LT e
0 Oxar Ox8L 2 3 e " ’ Or2tr + o) -0\ o\

O OX7TF + OXD9= V% ~24=¢F, or 12ZFwntiFes Yy,
e Helpful values (assuming 8-bit integers):

o Ox27 = 39 (signed) = 39 (unsigned)

o O@xD9 = -39 (signed) = 217 (unsigned)

o Ox7F = 127 (signed) = 127 (unsigned)

o Ox81 =-127 (signed) = 129 (unsigned)
Pt bl iy
Ox It +oxdDy = b, ot ML)
rol Vol too)
d1o 1 1080
Iﬂb_b uwc;:bwL \p PEYA S \ Ve, Ln.\
na, ‘r"zh-& Lo weve p-LL'u) vel ues w/ L‘('-ce.—t\»"' '-:fl_-)ms

Cab—ffB

ol \ o ed gool

l6 11 LDoo
o vmgel b e Lregel W b
uo q-':)v-u\.,\qc« weit O‘LL‘N) vy W/
Loele cendt g

30

Exploration Questions

[For the following expressions, find a value of signed char X,}

if there exists one, that makes the expression True.

e Assume we are using 8-bit integers: (igrel A= 255

s © x == (unsigned char) xefi’*g—\' ‘ 5
id*{““’“’ 0 x >= 128U e—%=-) D vhen MK 4 l‘“jiﬁ, b—'c%\‘\'s tou b g
.-Q::""\‘\L 0 x l= (x>>2)<<2 K=\ K>¥1:z0, (xWL)LL =0
o x == -x x=-\11. x:vL\ovvcsouo, —gcnwdl zdbantttlt oS luwocas
0':\;’\“_’_’\) m Hint: there are two solutions B
R =S\ WS =6

O (x < 1280U) && (x > 0x3F)
Nobew wmiwwg aigrt Llally Yo u\,...;.)w\,:

a0 Hva’c\/\\vwb Lk ten by o) LT le\ uao(\(_

31

Using Shifts and Masks

e Extract the 2" most significant byte of an int:
o First shift, then mask: (x>>16) & OxFF

X 00000001 |00000010 00011 00000100
X>>16 00000000 OOOOOOOO 0000 00000010
OxFF 00000000 OOOOOOOO 0060600 11111111

(x>>16) & OxFF 00000000 OOOOOOOO OOOOOOOO 00000010

o Or first mask, then shift: (x & OxFF0000)>>16

X 00000001 00000010 OOOOOO11 OOOOO1O0
OxFFO000 00000000 11111111 OOOOOOOO0 OOOOOOOO

X & OxFFO0000 00000000 00000010 OOOOOEOOO OLOOOOOOO
(X & OxFF)>>16 00000000 0000000 OOOOEOOO 00000010

32

Using Shifts and Masks (pt 2)

e Extract the sign bit of a signed int:

o First shift, then mask: (x>>31) & 0x1
m Assuming arithmetic shift here, but this works in either case
m Need mask to clear 1s possibly shifted in

X 0p 6666100000010 00000011 00000100
x>>31 00000000 00000000 00O0OO0O0O0OO OOCUOOYO
0x1 00000000 00000000 OOO0O0000 00000001
(x>>31) & O0x1 (00000000 00000000 0O0OO0O000 00000000
X 1p666661-00000010 00000011 00000100
x>>31 11111111 11111111 11111111 117TT 1
0x1 00000000 00000000 O0O0OO0O0O0O0O 00000001
(x>>31) & 0x1 |00000000 00000000 00000000 00000001

33

Using Shifts and Masks (pt 3)

e Conditionals as Boolean expressions
o Forint x, what does (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 111111171 11111111 11111111
'x 00000000 00000000 OOOO000O0O 00000000
1x<<31 00000000 00000000 00000000 00000000
('x<<31)>>31 (00000000 00000000 00000000 00000000

o Can use in place of conditional:

mInC: if(x) {a=y;} else {a=z;} isthe same as...

ma=(((!!1x<<31)>>31)&y)

(((!'x<<31)>>31)&z);

34

	Slide 1: Integers II
	Slide 2: Announcements, Reminders
	Slide 3: Review Questions
	Slide 4: Integers
	Slide 5: Values to Remember
	Slide 6: Signed/Unsigned Conversion Visualized
	Slide 7: Signed/Unsigned Conversion Visualized (pt 2)
	Slide 8: C Integer Casting (Review)
	Slide 9: Casting Surprises (Review)
	Slide 10: Sign Extension (Review)
	Slide 11: Two’s Complement Arithmetic
	Slide 12: Why Does Two’s Complement Work?
	Slide 13: Why Does Two’s Complement Work? (pt 2)
	Slide 14: Integers
	Slide 15: Arithmetic Overflow (Review)
	Slide 16: Overflow: Unsigned
	Slide 17: Overflow: Signed
	Slide 18: Why does this matter?
	Slide 19: Integers
	Slide 20: Shift Operations (Review)
	Slide 21: Shift Operations (Review) (pt 2)
	Slide 22: Left Shifting, 8-bit Example
	Slide 23: Right Shifting, 8-bit Example
	Slide 24: Right Shifting, 8-bit Example (pt 2)
	Slide 25: Undefined Behavior in C
	Slide 26: C Language
	Slide 27: Summary
	Slide 28
	Slide 29: Practice Question 1
	Slide 30: Practice Questions 2
	Slide 31: Exploration Questions
	Slide 32: Using Shifts and Masks
	Slide 33: Using Shifts and Masks (pt 2)
	Slide 34: Using Shifts and Masks (pt 3)

